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1.0 AIMS AND OBJECTIVES

After studying this lesson, you should be able to:
e Discuss the concept of recursion

e Describe algorithm analysis which includes mathematic background, model, what to analyze and
running time calculations

1.1 INTRODUCTION

Semantically data can exist in either of the two forms - atomic or structured. In most of the
programming problems data to be read, processed and written are often related to each other. Data
items are related in a variety of different ways. Whereas the basic data types such as integers, characters
etc. can be directly created and manipulated in a programming language, the responsibility of creating
the structured type data items remains with the programmers themselves. Accordingly, programming
languages provide mechanism to create and manipulate structured data items.



8 Advanced Data Structure M.S. University - D.D.C.E.

In this lesson, we begin with an explanation of what an algorithm and a data structure are. We
introduce the concept of abstract data types. We then describe the pseudo-code, which would be used
for writing the algorithms throughout. Finally, the important aspect of analysis of algorithms is briefly
touched upon with an introduction to the big ‘O’ notation.

We will also discuss recursion in this lesson. Iteration (looping) in functional languages is usually
accomplished via recursion. Recursive functions invoke themselves, allowing an operation to be
performed over and over. Recursion may require maintaining a stack, but tail recursion can be
recognized and optimized by a compiler into the same code used to implement iteration in imperative
languages. The Scheme programming language standard requires implementations to recognize and
optimize tail recursion.

1.2 RECURSION

Recursion is a wonderful, powerful way to solve problems. It is an important concept in computer
science. Many algorithms can be best described in terms of recursion. Recursion defines a function in
terms of itself. That is, in the course of the function definition there is a call to that very same
function. At first this may seem like a never ending loop, or like a dog chasing its tail. It can never
catch it. So too it seems our method will never finish. This might be true is some cases, but in practice
we can check to see if a certain condition is true and in that case exit (return from) our method. The
case in which we end our recursion is called a base case. Additionally, just as in a loop, we must change
some value and incrementally advance closer to our base case.

Consider this function:

void myMethod( int counter)
{

if (counter == 0)

return;

else

{
System.out.println(““+counter);
myMethod (--counter) ;
return;

}

}

This recursion is not infinite, assuming the method is passed a positive integer value.
Consider this method:

void myMethod( int counter)
{

if (counter == 0)

return;

else

{

System.out.println("hello" + counter) ;
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myMethod (--counter) ;

System.out.println(""+counter) ;

return;

}

}

The above recursion is essentially a loop like a for loop or a while loop. When do we prefer recursion

to an iterative loop? We use recursion when we can see that our problem can be reduced to a simpler
problem that can be solved after further reduction.

Every recursion should have the following characteristics:
e A simple base case which we have a solution for and a return value.

® A way of getting our problem closer to the base case, i.e., a way to chop out part of the problem
to get a somewhat simpler problem.

® A recursive call which passes the simpler problem back into the method.

The key to thinking recursively is to see the solution to the problem as a smaller version of the same
problem. The key to solving recursive programming requirements is to imagine that your method
does what its name says it does even before you have actually finish writing it. You must pretend the
method does its job and then use it to solve the more complex cases. Here is how.

Identify the base case(s) and what the base case(s) do. A base case is the simplest possible problem (or
case) your method could be passed. Return the correct value for the base case. Your recursive method
will then be comprised of an if-else statement where the base case returns one value and the non-base
case(s) recursively call(s) the same method with a smaller parameter or set of data.

Thus you decompose your problem into two parts:
1. The simplest possible case which you can answer (and return for)

2. All other more complex cases which you will solve by returning the result of a second calling of
your method.

This second calling of your method (recursion) will pass on the complex problem but reduced by one
increment. This decomposition of the problem will actually be a complete, accurate solution for the
problem for all cases other than the base case.

Thus, the code of the method actually has the solution on the first recursion.

Let's consider writing a method to find the factorial of an integer. For example 7! equals
7¥6*5%4%*3%*2*1 . But we are also correct if we say 7! equals 7%6!. In seeing the factorial of 7 in this
second way we have gained a valuable insight. We now can see our problem in terms of a simpler
version of our problem and we even know how to make our problem progressively more simple. We
have also defined our problem in terms of itself, i.e., we defined 7! in terms of 6!. This is the essence of
recursive problem solving. Now all we have left to do is decide what the-base case is. What is the
simplest factorial? 1!. 1! equals 1.

Let's write the factorial function recursively.

int myFactorial( int integer)

{

i1f( integer == 1)
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return 1;

else

{

return(integer* (myFactorial (integer-1);
}

}

Note that the base case (the factorial of 1) is solved and the return value is given. Now let us imagine
that our method actually works. If it works we can use it to give the result of more complex cases. If
our number is 7 we will simply return 7 * the result of factorial of 6. So we actually have the exact
answer for all cases in the top level recursion. Our problem is getting smaller on each recursive call
because each time we call the method we give it a smaller number. Try to run this program in your
mind with the number 2. Does it give the right value? If it works for 1 then it must work for two since
2 merely returns 2 * factorial of 1. Now will it work for 3> Well, 3 must return 3 * factorial of 2. Now
since we know that factorial of 2 works, factorial of 3 also works. We can prove that 4 works in the
same way, and so on and so on.

However, in fact, your code won't run forever like an infinite loop, instead, you will eventually run
out of stack space (memory) and get a run-time error or exception called a stack overflow. There are
several significant problems with recursion.

Mostly it is hard (especially for inexperienced programmers) to think recursively, though many Al
specialists claim that in reality recursion is closer to basic human thought processes than other
programming methods (such as iteration). There also exists the problem of stack overflow when using
some forms of recursion (head recursion.) The other main problem with recursion is that it can be
slower to run than simple iteration. Then why use it? It seems that there is always an iterative solution
to any problem that can be solved recursively. Is there a difference in computational complexity? No.

Is there a difference in the efficiency of execution? Yes, in fact, the recursive version is usually less
efficient because of having to push and pop recursions on and off the run-time stack, so iteration is
quicker. On the other hand, you might notice that the recursive versions use fewer or no local
variables.

So why use recursion? The answer to our question is predominantly because it is easier to code a
recursive solution once one is able to identify that solution. The recursive code is usually smaller,
more concise, more elegant, possibly even easier to understand, though that depends on ones thinking
style. But also, there are some problems that are very difficult to solve without recursion. Those
problems that require backtracking such as searching a maze for a path to an exit or tree based
operations are best solved recursively.

Tail Recursion

Tail recursion is defined as occurring when the recursive call is at the end of the recursive instruction.
This is not the case with my factorial solution above. It is useful to notice when ones algorithm uses
tail recursion because in such a case, the algorithm can usually be rewritten to use iteration instead. In
fact, the compiler will (or at least should) convert the recursive program into an iterative one. This
eliminates the potential problem of stack overflow.
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This is not the case with head recursion, or when the function calls itself recursively in different places.
Of course, even in these cases we could also remove recursion by using our own stack and essentially
simulating how recursion would work.

In the example of factorial above, the compiler will have to call the recursive function before doing the
multiplication because it has to resolve the (return) value of the function before it can complete the
multiplication. So the order of execution will be "head" recursion, i.e. recursion occurs before other
operations.

To convert this to tail recursion we need to get all the multiplication finished and resolved before
recursively calling the function. We need to force the order of operation so that we are not waiting on
multiplication before returning. If we do this the stack frame can be freed up.

The proper way to do a tail-recursive factorial is this:

int factorial (int number) {

if (number == 0) {

return 1;

}

factorial_i (number, 1);

}

int factorial_i(int currentNumber, int sum) {
if (currentNumber == 1) ({

return sum;

} else {

return factorial;i(currentNumber - 1, sum*currentNumber) ;

}

Recursion

}

Notice that in the call return factorial_i(currentNumber - 1, sum*currentNumber); both parameters
are immediately resolvable. We can compute what each parameter is without waiting for a recursive

function call to return. This is not the case with the previous version of factorial. This streamlining
enables the compiler to minimize stack use as explained above.

1.3 ALGORITHM ANALYSIS

Computer science is the study of methods for effectively using a computer to solve problems, or in
other words, determining exactly the problem to be solved.

This process entails:
1. Understanding of the problem.

2. Translating descriptions, goals, requests and unstated desires into a precisely formulated
conceptual solution. ’

3. Implementing the solution with a computer program.
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This solution typically consists of two parts: data structures and algorithms.

An algorithm is a well-defined list of steps for solving a particular problem. A set of algorithms are
always used for performing operations on the data stored by means of data structure. Thus algorithms
handle data through data structure. In constructing a solution to a problem, a data structure must be
chosen that allows the data to be operated upon easily in the manner required by the algorithm.

Data may be arranged and managed at many levels. Algorithm has to be designed in such a manner so
that it can perform the desired operation on the stored data.

An algorithm may need to put new data into an existing collection of data, remove data from a
collection, or query a collection of data for a specific purpose.

In the design of many types of programs, the choice of data structures is a primary design
consideration. Experience in building large systems has shown that the difficulty of implementation
and the quality and performance of the final result depends heavily on choosing the best data
structure. After the data structures are chosen, the algorithms to be used often become relatively
obvious. Sometimes things work in the opposite direction - data structures are chosen because certain
key tasks have algorithms that work best with particular data structures. In either case, the choice of
appropriate data structures is crucial.

The formal algorithm consists of two parts. The first part is a paragraph describing the purpose of the
algorithm, identifies the variable which is used in the algorithm and lists of input data. The second part
of the algorithm consists of the list of steps that is to be executed.

1.3.1 Problem Solution using Pseudocode

Pseudocode is an outline of a program, written in a form that can easily be converted into real
programming statements.

Pseudocode cannot be compiled nor executed, and there are no real formatting or syntax rules. It is
simply one step ~ an important one - in producing the final code. The benefit of pseudocode is that it
enables the programmer to concentrate on the algorithms without worrying about all the syntactic
details of a particular programming language. In fact, you can write pseudocode without even knowing
what programming language you will use for the final implementation.

Problem

A shop has started a discount scheme. According to that scheme if the purchased quantity is more 10
then 10% discount DISC has been given to the customer. Operator has to enter the quantity QTY and
rate RATE of the item; the program will display the total value TOT VAL. One way to solve the
problem is as follows: '

Solution

First Initialize DISC with = 0 and accept the RATE and QTY from the user. Then check whether the
QTY is more than 10 or not. If QTY > 10 then set DISC = 10. Calculate the total value TOT VAL
and display it.

A formal Algorithm of the stated problem:
Algorithm: (Total Value Calculation)

+ This algorithm accepts the input for QTY and RATE from the user then checks whether the QTY >
10 or not. If QTY > 10 then assigns DISC = 10. After that the VAL = (QTY * RATE) - (RATE *
DISC/100) is calculated and displayed.
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Step 1. [Initialize] set DISC: =0.
Step 2. [Accept the rate and quantity of the item].
Accept and assign INPUT for QTY and RATE.
Step 3. [Check QTY >10]
If QTY > 10, then:
set DISC: =10. [Allow discount]
[End of If structure.]
Step 4. [Calculation of total value]
Set VAL: = (QTY * RATE) - (RATE * DISC/100).
Step 5. Print VAL.
Step 6. Exit.

1.3.2 Problem Solution using Flow Chart Diagram

A flow chart is a graphical or symbolic representation of a process. Each step in the process flow is
represented by a different symbol and contains a short text description of the process step in the flow chart
symbol. The flow chart symbols are linked together with arrow connectors (also known as flow lines).

Table 1.1: Program Flow Chart Symbols

Terminal box indicates the point at which the
algorithm begins or terminates.

Processing box indicates the straightforward
computation, assignment operation.

Input-Output box used for taking input data and

giving output results or messages.
Decision box used when algorithm has to choose between
two or three branches leading to other parts of a
flowchart.

Represents a predefined module. the detailed
internal steps of which are defined elsewhere.
Subroutines.

direction of flow.

Q Connector connects different parts of flow chart.

T l —_—p 44— Flow lines used to connect different boxes and indicate
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A Flow chart of the previously stated Total Value Calculation problem is given below:

Start

DISC v
R

/ INPUT
QTY, RATE

VAL 4= (QTY * RATE) - (RATE * DISC/100)

v

PRINTVAL |/

T

1.3.3 Mathematic Background

As in C, we shall assume four basic data types - integer, float, boolean and char. Integer and float (also
called real in some languages) are available in every programming language. A variable of type boolean
can have either true or false as its value. A variable constant or a float constant will be written in the
usual form. For example, -78 is an integer constant while -78.5 and .78e-3 are float constants. A
character constant will be written by enclosing it within single quotation marks like ‘a’ or ‘A’ or ‘%’.
A boolean constant will be written as true or false. Among the constants, we shall also allow ‘strings’
(a string is a sequence of characters) for example, ‘xyz’.

Expressions will be made up of variables and constants connected by means of operators. We shall use
the usual arithmetic operators like +, -, * and /. In addition to these, operators like mod will be used
to mean remainder of integer division. Thus a mod b will mean the remainder of division of a by b.
The operators * and mod will have higher precedence than + and -. Float and integer can be mixed in

expressions but the result will be float. Boolean expressions can be obtained by using the relational
operators like the following:

== (equal to)
I= (not equal to)
< (less than)
> (greater than)

< = (less than or equal to)
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> = (greater than or equal to)

Boolean variables or expressions can be connected with the logical operators not represented by !, and
represented by &&, or represented by ||, to obtain further compound boolean expressions. For
example,

(a>=10)|| (@ <=20)

would mean a should be greater than or equal to 10 or a should be less than or equal
to 20. Among the logical operators not will have a higher precedence than and which in turn will have
a precedence higher than or.

As regards associativity of operators, we shall use parentheses to avoid confusion. Implicitly, left to
right associativity will be assumed. Thus, a * b / ¢ would mean (a*b)/c.

The variables used in the programs should be declared before the executable statements in a section
beginning with the keyword var. The format of a variable declaration is as follows:

<data type> <list of variables >;

For example,

int x, y, z;

means that x, y and z are variables of type integer. The data type can be standard type or user-defined.

The enumerated type as available in C are assumed to be included in this pseudo-code. We illustrate
this with the help of following example:

enum colour (brown, red, green);

This declaration assigns 0 to brown, 1 to red and 2 to green. The enumerated type is defined with a list
of names as shown in the case of colour. These names are the values of a variable of this type we can
assume. For example, the statement,

a = brown;
will assign the value of brown to a. Note that brown is a constant of type color and not a variable.

As in every programming language, the implied sequencing of statements will be assumed in the
pseudo-code. This means that statements will be executed sequentially in a top-to-bottom manner
unless the flow of control is explicitly altered by a control construct such as a loop construct. The
statements will be separated from one another by means of a semicolon(;). A group of statements
placed within begin and end will be a compound statement and will be treated as a single unit.

There will be assignment statements in the usual format namely,
<variable> = <expression>;

Thus,

afi] = xy;

is an example of the assignment statement.

We shall also use the usual if-then-else statement in the following format:

if <condition> then <statement block > else < statement block >



16 Advanced Data Structure M.S. University - D.D.C.E.

Here, <condition> is a boolean expression. Sometimes it will be expressed using English. Each of the
‘then’ or ‘else’ parts will contain one simple or compound statement. We further assume that the ‘else’
part may be absent. The statements in the ‘then’ part will be executed if the condition is true
otherwise the statements in the ‘else’ part will be executed. In either case, control will reach the next
statement in sequence after the execution of the said statements.

The following are examples of the if-then-else construct:
o (] < oK) x = o]} else {x = afk]};

o if(fist) {x =35y =5}else{x =7y =9

In the above example first is a boolean variable.

As for the loops, we shall use three statements — the while, the do-while and the for statements. The
while statement has the following format:

while < condition> do <statement >

The statement within the while construct will be executed repeatedly so long as the condition becomes
true. Once the condition is false, the loop is exited. The statements within the loop are not executed at
all if the condition is false to start with. The format of the do-while statement is as follows:

do <statements > while < condition >

The statements within the do-while construct will be executed repeatedly as long as the condition
remains true. The loop will be executed at least once irrespective of the condition. Note that unlike
the while, the do-while allows more than one statement to be written within its scope and no curly
races are necessary. The format of the for statement is shown below:

For(<initialization >; < condition > ; < modification >) <statement>;

<Initialization > assigns initial values to the loop-control variables. The statement within the loop
will be executed repeatedly, with different values of the control variable. Each time the loop is
repeated, the values of the control variables are modified in <modification> section. The loop is
exited when the <condition> becomes false.

The following are some examples of the while, do-while and for statements:
while(j < 100) {sum = sum + a[j};j = j + 1;}

for(j = 1;j < 100;i = i + 1) sum = sum + a[j};

do {sum = sum + afj];j = j + 1} while ( < 100)

for(j = 100;j > 1;j = j - 1) sum = sum + afj);

To call a function (or a procedure) the following statement is used:
<function/procedure name > (< parameter list >);

The parameter list consists of expressions that stand for the actual parameters. The expressions will be
separated by commas (). Thus the procedure statement, find(x, y, z + 3); means a call to some
procedure named find and x, y, z + 3 are the actual parameters (also called actual arguments). As usual
the correspondence between actual parameters and formal parameters (also known as dummy
arguments) will be positional.
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1.3.4 Model: Abstract Data Type (ADT)

Abstract Data Type (ADT) is a mathematical model with a collection of operations defined on that
model. Sets of integers, together with the operations of union, intersection and set difference, form a
simple example of an ADT. The ADT encapsulates a data type in the sense that the definition of the
type and all operations on the type can be localized and are not visible to the users of the ADT. To the
users, just the declaration of the ADT and its operations are important.

Abstract Data Type
® A framework for an object interface

e  What kind of stuff it'd be made of (no details)?

e  What kind of messages it would receive and kind of action it'll perform when properly triggered?

Do _this (p1, p2, p3) Conceptualization phase

Also_this (p1, p2, p3) Object

Do that (p1, p2, p3)

From this we figure out:
®  Object make-up (in terms of data)
®  Object interface (what sort of messages it would handle)

e How and when it should act when triggered from outside (public trigger) and by another object
friendly to it?

These concerns lead to an ADT - a definition for the object.
An Abstract Data Type is a set of data items and the methods that work on them.

An implementation of an ADT is a translation into statements of a programming language, of the
declaration that defines a variable to be of that ADT, plus a procedure in that language for each
operation of the ADT. An implementation chooses a data structure to represent the ADT; each data
structure is built up from the basic data types of the underlying programming language. Thus, if we
wish to change the implementation of an ADT, only the procedures implementing the operations
would change. This change would not affect the users of the ADT.

Although the terms ‘data type’, ‘data structure’ and ‘abstract data type’ sound alike, they have
different meanings. In a programming language, the data type of a variable is the set of values that the
variable may assume. For example, a variable of type boolean can assume either the value true or the
value false, but no other value. An abstract data type is a mathematical model, together with various
operations defined on the model. As we have indicated, we shall design algorithms in terms of ADTs,
but to implement an algorithm in a given programming language we must find some way of
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representing the ADTs in terms of the data types and operators supported by the programming
language itself. To represent the mathematical model underlying an ADT, we use data structures,
which are a collection of variables, possibly of several data types, connected in various ways.

The cell is the basic building block of data structures. We can picture a cell as a box that is capable of
holding a value drawn from some basic or composite data type. Data structures are created by giving
names to aggregates of cells and (optionally) interpreting the values of some cells as representing
relationships or connections (e.g., pointers) among cells.

1.3.5 What to Analyze?
® Here correct algorithms are analyzed.
®  Analgorithm is said to be correct if it stops with the correct output, for each input instance.
® Incorrect algorithms
% may not stop in any way on some input instances

% may stop with other than the desired answer

1.3.6 Running Time Calculations

An algorithm is a method for solving a class of problems on a computer. The complexity of an
algorithm depends on the running time, or storage, or whatever units are relevant for using the
algorithm to solve one of those problems.

Computing takes time. Some problems take a very long time, others can be done quickly. Some
problems seem to take a long time, and then someone discovers a faster way to do them (a ‘faster
algorithm’). The study of the amount of computational effort that is needed in order to perform
certain kinds of computations is the study of computational complexity.

Naturally, we would expect that a computing problem for which millions of bits of input data are
required would probably take longer than another problem that needs only a few items of mnput. So
the time complexity of a calculation is measured by expressing the running time of the calculation as a
function f(n) of some measure of the amount of data that is needed to describe the problem to the
computer.

For instance, think about this statement: 'I just bought a matrix inversion program, and it can invert
an n X n matrix in just 1.2n’ minutes.' We see here a typical description of the complexity of a certain
algorithm. The running time of the program is being given as a function of the size of the input
matrix.

A faster program for the same job might run in 0.8n° minutes for an n x 1 matrix. If someone were to
make a really important discovery, then maybe we could actually lower the exponent, instead of
merely shaving the multiplicative constant. Thus, a program that would invert an n X n matrix in
only 7n2.8 minutes would represent a striking improvement of the state of the art.

The general rule is that if the running time is at most a polynomial function of the amount of input
data, then the calculation is an easy one, otherwise 1t's hard.
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Suppose we are writing an algorithm for searching the occurrence of a particular letter from a given
word. If, the letter occurs at the beginning of the word then the f(n) is small. On the other hand, if the
particular letter does not appear in the given word then the f(n) is big.

Generally the complexity of an algorithm is measured by three certain cases.

®  Best Case: The minimum value of f(n) for any possible input.

®  Average Case: The average value of {(n) for a certain probabilistic distribution for the input.
®  Worst Case: The maximum value of f(n) for any possible input.

Big-O Notation

It is a theoretical measure of the execution of an algorithm, usually the time or memory needed, given
the problem size n, which is usually the number of items. Informally, saying some equation
f(n) = O(g(n)) means it is less than some constant multiple of g(n). The notation is read, “f of n is big
ohofgofn”

Formal Definition: f(n) = O(g(n)) means there are positive constants ¢ and k, such that 0 = f(n) = cg(n)
forall n = k. The values of ¢ and k must be fixed for the function f and must not depend on n.

cg(n)
£(n)

Ny k

Figure 1.1: Graphical Representation Big O Notation

Performance of an algorithm (and therefore the corresponding program) is often measured in terms of
the space and time required to execute it. Generally, time and space required to execute a program are
inversely proportion. Accordingly, if the program is required to be executed quickly, the space it will
occupy will be more and vice-versa.

A time-critical system, such as real time systems that need very small response time, would achieve its
objective by allowing the program to occupy more space in the memory. On the other hand, a
space-critical program would take more time to run.

However, an algorithm can almost always be developed that uses the available space and execution
time balance in a given system.
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Check Your Progress

1. Fill in the blanks:
(2) Iteration (looping) in functional languages is usually accomplished via .............
(b) Recursion defines a function in terms of .................. .
(c) The case in which we end our recursion is called a ............... case.

2. Define algorithm.

3. How many parts are there in a formal algorithm? Mention the parts.

4. Define pseudocode.

1.4 LET US SUM UP

Recursion is a wonderful, powerful way to solve problems. Recursive functions invoke themselves,
allowing an operation to be performed over and over. Recursion may require maintaining a stack, but
tail recursion can be recognized and optimized by a compiler into the same code used to implement
iteration in imperative languages.

An algorithm is a well-defined list of steps for solving a particular problem. The formal algorithm
consists of two parts. The first part is a paragraph describing the purpose of the algorithm, identifies
the variable which is used in the algorithm and lists of input data. The second part of the algorithm
consists of the list of steps that is to be executed.

The objective of analyzing an algorithm is to obtain quantitative measures for the resources required
by the algorithm during its execution. Performance of an algorithm is often measured in terms of the
space and time required to execute it. Generally, time and space required to execute a program are
inversely proportion. Accordingly, if the program is required to be executed quickly, the space it will
occupy will be more and vice-versa.

1.5 KEYWORDS

Recursion: It is a method in which a function calls itself.

Tail Recursion: It is defined as occurring when the recursive call is at the end of the recursive
instruction.

Flow Chart : Diagramatic representation of an algorithm.

Pseudocode: An outline of a program, written in a form that can easily be converted into real
programming statements.

Data Structure: A combination of one or more basic data types to form a single addressable data type
along with operations defined on it.

Algorithms: A finite set of instructions which, when followed, accomplishes a particular task, the
termination of which is guaranteed under all cases.

ADT (Abstract Data Type): A mathematical model with a collection of operations defined on that
model.
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Space Complexity: A quantitative measures for the space required by the algorithm during its execution.

Time Complexity: A quantitative measures for the time required by the algorithm during its execution.

1.6 QUESTIONS FOR DISCUSSION

1. What is recursion? How does recursion works?

2. Describe tail recursion.

3. Can you express each of the following algebraic formulae in a recursive form:
@y=&+x+ . + x)
(b)y =1+ 2x+ 4%, + 8%, + .. + 2X,.
@y =(1+x)

4. GivenS =1+22+ 3 + 4 + ... + n2, where S is the sum of the squares of n numbers, write
an algorithm to compute S.

5. Werite an algorithm to compute the sums for the first n terms of the following series, where n has
to be input by the user :

(@ S=1+2+3+ ..

by S=1+3+5+ ...

© S=2+4+6+ ...

d S=1+1/2+1/3+..
6. Given a number n, write an algorithm to compute the factorial of n.
7. Write short note on the following:

(a) ADT

(b) Mathematical notations

Check Your Progress: Model Answers
1.  (a) Recursion
(b) Itself
(c) Base

[N%)

An algorithm is a well-defined list of steps for solving a particular problem.

3. The formal algorithm consists of two parts. The first part is a paragraph describing the
purpose of the algorithm, identifies the variable which is used in the algorithm and lists of
input data. The second part of the algorithm consists of the list of steps that is to be
executed.

4 Pseudocode is an outline of a program, written in a form that can easily be converted into
real programming statements.
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2.0 AIMS AND OBJECTIVES

After studying this lesson, you should be able to:

® Describe the application of ADT in linked lists

® Explain the application of ADT in stacks

e Identify the application of ADT in queues




24 Advanced Data Structure M.S. University - D.D.C.E.

2.1 INTRODUCTION

Computers help us in solving many real life problems. We know that computers can work with
greater speed and accuracy than human beings. What actually does a computer do? A very simple
answer to this question is that a computer stores data and reproduces it as information as and when
required. Representation of data should be in a proper format so that accurate information can be
produced at high speed. In this lesson, we will study the various ways in which data can be
represented. Efficient storage and retrieval of data is important in computing, In this lesson, we will
study and implement various data structures.

Organized data is known as information. Let us consider a few examples and try to understand what
data structures are. You all must have seen a pile of plates in a restaurant. Whenever a plate is required,
the plate on the top is removed. Similarly, if a plate is added to the pile, it is kept on the top of the
pile. There is a definite process involved in the storage and retrieval of the plates. If the rack is empty
there will be no plates available. Similarly, if the rack is full then there will be no place for more plates.
Similar process is applied with stacks. Stack is a data structure which stores data at the top, this
operation is known as push. It retrieves data from the top, the operation is known as pop. If the stack
is empty then the pop operation raises an error while push operation cannot be performed if the stack
is full. Stack is shown in Figure 2.1.

Top

Figure 2.1: Stack (Pile of Plates)

You must have seen a queue at the bus stop. There is a well-defined method for a person to enter the
queue as well as leave the queue to get into the bus. To enter a queue a person stands at the end of the
queue and the person at the start of the queue leaves the queue to enter the bus. Similarly, we have
queue as a data structure in which a data element is added at the rear end and removed from the front
end. Figure 2.2 shows the structure of queue.

front(leave the queue) rear (enter the queye)

v

Figure 2.2: Queues

In a train, separate compartments are joined together. A new compartment can be added at the end, at
the beginning or in between the existing train compartments. The same method is followed to remove
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a compartment. Linked lists in data structures follow similar approach. An element can be inserted and
deleted from any position in the linked list. A list can be shown as in Figure 2.3.

Figure 2.3: Linked List (Train Compartments)

There are other data structures that we will study in this course, for example graphs, trees etc. As we
have seen in the above examples data structures stores a given set of data according to certain rules.
These rules help in organizing the data.

You have studied programming languages before. This example will use some concepts from it to
explain why data structures are essential. Data can be stored in various ways. Usually the
representation chosen depends on the nature of the problem and not on the data. Consider a program,
which requires storing marks of five students for a single subject. The simplest way to store them will
be to use five integer variables. We assume that the roll numbers are from one to five. Now I wish to
write a program, which can give me the marks of any roll number given as input. Is it possible to write
an efficient program to do this task if the numbers are stored as variables?

a b ¢ d e
O o o O O

Figure 2.4: Marks Stored in five different Variables

The data, in this case the marks, is stored, but it cannot be reproduced as information efficiently. Now
we take an array of integers with five elements. The above data is stored in the array. An array will
have a name ‘a’ and each individual element can be accessed using index. Therefore, the marks for the
first roll number will be stored as a [0], for the second roll number as a [1] and so on.

There is a relation between the roll number and the array index. Now it is much easier to access the
marks according to the roll number. This could not be achieved using variables, as there was no
relation between the data. It was not possible to relate marks and roll number.

al0] a[l] a[2] a[3] a[4]

Figure 2.5: Marks Stored as an Array

The above example can be slightly modified so that now we will store the marks of three subjects per
roll number. We can take three independent arrays to store them. We can access the individual marks
for each roll number from the respective arrays. We find that the arrays contain marks of different
subjects for the same roll number. It would be easier to handle the marks if these three arrays were
grouped together.
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al0]l  a[1] al2] a[3] a[4]

R[0] b[1] b[2] b[3] b[4]

2£[0le[1] <[2] e[3] c[4]

Figure 2.6: Three Arrays to Store the Marks of three Subjects

Now, we need a data structure that stores the above information in logical relation with each other so
that it can be retrieved with higher speed. Structures in C/C+ + store various fields together, so now
we can store the marks of three subjects in the structure and then make an array of five elements. The
above example shows that the method in which data should be represented depends on the problem to
be solved. The structure definition will be as follows:

struct record
{

int al[5];

int b[5];

int c¢[5];

Y

In the above problem, we have used three different types of representations for the data. They are all
built using the basic data structures. There are certain rules associated with each darta structure that
restrict the storage and retrieving of data in an ordered format. We have seen examples like stacks and
queues, which restrict the entry and exit of its elements according to certain rules. Stacks allow entry
and exit of elements at the top position only, while in queues an element is added at the end and
removed from the front. Arrays and structures are built in data structures in most of the programming
languages. Data can be stored in many other ways using other type of data structures. Thus we can
define data structure as a collection of data elements whose organization is characterized by accessing
functions that are used to store and retrieve individual data elements. Data structures are represented at
the logical level using a tool called Abstract Data Type and actually implemented using algorithms.

Abstract Data Type’s show how exactly the data structure behaves. What are the various operations
required for the data structure? It can be called as the design of the data structure. Using the Abstract
Data Type, it can be implemented using various algorithms. Abstract Data Type clearly states the
nature of the data to be stored and the rules of the various operations to be performed on the data. For
example, the Abstract Data Type of a stack will clearly state that a new element will be inserted at the
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top and an element can be removed only from the top of the stack. It does not specify how these rules
should be implemented. It specifies what are the requirements of a stack.

The implementation of a data structure is done with the help of algorithms. An algorithm is a logical
sequence of discrete steps that describe a complete solution to a given problem in a finite amount of
time. A task can be carried out in various ways, hence there are more than one algorithm which can be
used to implement a given data structure. This means that we will have to analyze algorithms to select
the best suited for the application.

2.2 SINGLY LINKED LIST

An array is an example of list. Arrays have fixed size, which is declared and fixed at the start of the
program, and therefore can not be changed while it is running. For example, suppose an array of size 5
has been declared at the start of the program.

Now, this size cannot be changed while running the program. This we all know is static allocation.
When writing the program, we have to decide on the maximum amount of memory that would be
needed. If we run the program on a small collection of data, then much of the space will go waste. If
program is run on bigger collection of data, then we may exhaust the space and encounter an
overflow. Consider the following example:

Example: Suppose, we define an array of size 5. If we store 5 elements in it, it is said to be full and no
space is left in it. On the contrary, if we store 2 elements in it, then 3 positions are empty and virtually
useless, resulting in wastage of memory.

1 1
2 2
3
4
3
A full array An array with more than half
locations empty

Figure 2.7

Dynamic data structures can avoid these difficulties. The idea is to use dynamic memory allocation.
We allocate memory for individual elements as and when they are required. Each memory location
contains a pointer to the location where the successive element is stored. A pointer or a link or a
reference is a variable, which stores the memory address of some other variable. If we use pointers to
locate the data in which we are interested, then we need not worry about where the data is actually
stored, since by using a pointer, we can let the computer system itself locate the data when required.
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Linked lists use the concept of dynamic memory allocation. In this respect, they are different than
arrays. Every node in a linked list contains a ‘link’ to the next node as shown below. This link is
achieved by using pointers.

Structure 1 Structure 2 Structure 3

item » item o ite -

e TSN FAAS A4

Next end

Start

Figure 2.8: A Linked List

This vype of list is called a linked list because it is a list where order is giveh by links from one item to
the next.

2.2.1 ADT of Singly Linked Lists

There are various operations, which can be performed on lists. The list Abstract Data Type definition
given here contains a small collection of basic operations, which can be performed on lists:

List ADT Spectfication

Value Definition: The value definition of a linked list contains a data type for storing the value of the
node along with the pointer to the next node. The value can be represented using a simple data type or
a collection of basic data types. However, it must necessarily contain at least one pointer to the next
structure. This can be shown as follows: A

struct datatype

{

int item;

struct datatype *next;
}

or,

struct datatype

{

int item;

float info;

char str;

struct datatype *next;

3

Definition clause: The nodes of the list are all of the same type, and have a key field called key. The list
is logically ordered from smallest unique element of key to the largest value i.e. at any position the key
of the element is greater than its predecessor and smaller than its successor.
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Operations:
1.  Crlist:
Function: creates a list and initializes it as empty.
Preconditions: none.
Postconditions: list is created and is initialized as empty.
2. Insert:
Function: inserts new element into the list either at the beginning, in the middle or at the end.
Preconditions: a list already exists.
Postconditions: list is returned with the new element inserted in it.
3.  Delete:
Function: searches a list for the element and removes the element from the list.
Preconditions: the list already exists.
Postconditions: the list is returned with the element removed from it.
4. Print
Function: traverses the list and prints each element.
Preconditions: the list already exists.

Postconditions: list elements are printed in the order they are present in the list. List remains
unchanged.

5. Modify:
Function: searches for an element and replaces it with a new value.
Preconditions: the list already exists.
Postconditions: the element if present is modified by a new value.

These are the basic set of operations that might be needed to create and maintain a list of elements.
Other operations, which can be performed on linked lists, are:

1. Counting the elements in a list.

2. Concatenating two lists.

Users can think of more operations like comparing two lists, adding the elements of two lists, etc.
depending on a specific problem and try building ADT’s of their own. '
2.2.2 Implementation

Each element of the list is called a node and consists of two or more members. Some members can
contain the information pertaining to that node and the others may be pointers to other nodes. In case of
a singly linked list, one member consists of such a pointer. A linked list is therefore a collection of
structures ordered not by their physical placement in memory but by logical links that are stored as part
of data in the structure itself. The link is in form of a pointer to another structure of the same type.
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Such a structure is represented in ‘C/C+ +” as follows:

struct node

{

int item;

struct node *next;

Yi

The first member is an integer item and the second a pointer to the next node in the list as shown. The
item can be any complex data type. That is it can contain a collection of basic data types. Further, as
we will study doubly linked lists later, we can have more than two pointers. One, pointing to the

successor node and the other to the predecessor. The pointer type is the type of the node itself. This
node can be shown as follows:

struct node

{

int item;

float info;

char str;

struct node *next;
}i

Right now, we will limit our discussion to singly linked lists with only two members, ie. one
containing the data and the other a pointer to the next node.

node

protediivadred

it

Rt vivy)

next

Figure 2.9: Node

Such structures, which contain a member field that points to the same structure type, are called
self-referential structures. A node may be represented in general form as follows:

| struet label-name
{
Lype menberi;
Lype menber?:
L¥pe wembers;
Struct label-name *next;
1:

Figure 2.10: Structure Declaration for the Node
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The node may contain more than one item with different data types. However, one of the items must
be a pointer of the type label-name. The above node with all its members can be depicted as follows:

memberl member2 mermber f next

node

Consider a simple example to understand the concept of linking. Suppose we define a structure as
follows:

struct list

{

int value;

struct list *next;
Y

Assume that the list contains two node viz. nodel and node2. They are of type struct list and are
defined as follows:

struct list nodel,node2;

This stazement creates space for two nodes each containing two empty fields as shown below:

nodel

Nodel.value
Nodel.next

nodez

node? .value
node .next

Figure 2.11: Creation of the two Nodes
The next pointer of nodel can be made to point to node2 by the statement

nodel.next =&node2;
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This statement stores the address of node? into the field nodel.next and thus establishes a “link”
between nodel and node2 as shown below:

nodel
| nodel.value ]

nodesl
nodel.value
Address of
node?

link node2
-3 | nodel value
node2 .nexse

Figure 2.12: Node 1 Pointing to Node 2
Now we can assign values to the field value.
nodel.value=30;
node2.value=40;

The result is as follows:

nodel

20
871800

link node2

4@

[ nodeZ.nert |

Figure 2.13: The Complete List of two Nodes

Assume that the address of node2 is 871800. As you can see, that address is now stored in the next field
of nodel.

We may continue this process to create a linked list of any number of values. Each time you need to
store a value allocate the node and use it in the list. For example,

node2.next=&node3; would add another link.

Also every list must have an end. This is necessary for processing the list. C has a special pointer value
called NULL that can be stored in the next field of the last node.

In the above two-node list, the end of the list is marked as follows:
node2.next=NULL;
The value of the value member of node2 can be accessed using the next member of node1 as follows:

cout< <”\n” < <nodel.next-> value;
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2.3 APPLICATION: POLYNOMIAL ADDITION

We will now try to add two polynomials using linked lists. In mathematics a polynomial is written as
follows:

P®=ax"+ ax"Y + .. +a,

Each term will be represented as a node. The node will be of fixed size having 3 fields, which represent
the coefficient and exponent of a term plus the pointer to the next term.

Assuming that all coefficients are integers, the required declarations in C are as follows:

STRUCT LINK_LIST
{

INT COEF;

INT EXPO;

STRUCT LINK_LIST *NEXT;

}i

Polynomial nodes will be drawn as below:

For example, the polynomial a = 3x™ + 2x' + 3x* will be stored as:

In order to add two polynomials together, we examine their starting terms. Two pointers are used to
move along the two polynomials. If the exponents of two terms are equal, then the coefficients are
added and a new term created for result. If the exponents are not equal, then the term with bigger
exponent is attached to the resultant polynomial.

Following is the program and algorithm for the above problem:

/*this program adds two polynomials using linked lists*/

Algorithm

Step 1: Start.

Step 2: Ask the user to enter the first polynomial.

Step 3: Ask the user to enter the value of coefficient and exponent, or ‘0,0’ terminate the polynomial.
Step 4: Ask the user to enter the second polynomial.

Step 5: Repeat step 2

Step 6: If the user enters the value greater than 0, then match the values of different exponents entered
by the user and then perform addition of the coefficients with similar exponents.

Step 7: Display the results after the polynomial addition.
Step 8: End.

#include <stdlib.h>

#include <conio.h>

#include <iostream.h>
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#include <stdio.h>

#define TRUE 1

#define FALSE 0

#define MAX 10

int array[MAX];

class polyadd

{

protected:

struct link_list

{

int coef;

int expo;

struct link_list *next;
};typedef struct link_list node;
public:

void crpoly(node *list);

void padd(node *listl, node *1list2, node *1ist3);

void print(node *1list);

}i

void polyadd::crpoly(node *list) //create the polynomial
{

int x, vy;

cout<<endl<<"Input a pair of number as 'coef, expo' :";
cout<<endl<<"input '0,0' to stop entering”;
cout<<endl<<"input the coefficient ";

cin >>x;

cout<<endl<<"input the exponent ";

cin >>y;

if(x==0 && y == 0)

{

list->next = NULL;

list->next = new node();
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list->next->coef

list->next->expo
crpoly (list->next)
}

return;

}

void polyadd: :padd{node *listl, node *1list2, node

7

X

Yi

{ //add two polynomials

if(listl != NULL || list2 != NULL)

{
if(listl->expo ==
{
list3->next = new
list3->next->next
list3->next->coef
list3->next->expo
padd(listl->next,
}

1

n

1

ist2->expo)

ode () ;

NULL;

listl->coef + list2->coef;
listl->expo;

ist2->next, list3->next);

else if(listl->expo>list2->expo)

{

list3->next= new node();

list3->next->next
list3->next->coef
list3->next->expo
padd(listl->next,
}

1

NULL;
listl->coef;
listl->expo;

ist2, list3->next);

else if(listl-»expo< list2->expo)

{

list3->next = new
list3->next->next
list3->next->coef

list3->next->expo

n

ode () ;
NULL;
list2->coef;

list2->expo;

padd(listl, list2->next, list3—>next};

}

else if(listl == NULL && list2!= NULL)

{
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list3->next = new node():

list3->next->next = NULL;

list3->next->coef list2->coef;

list2->expo;

i

list3->next->expo
padd(listl, list2->next, list3->next);
}

else if(list2 == NULL && listl!= NULL)
{

list3->next = new node();
list3->next->next = NULL;

list3->next->coef listl->coef;

#

list3->next->expo listl->expo;
padd(listl->next, list2, list3->next);
}

}

return;

}

void polyadd: :print (node *list)

{

if(list->next != LL)

{

cout<<endl<<"Coefficient is "<<list->next->coef;
cout<<endl<<"Exponent is "<<list->next->expo;
print(list->next);

}

return;

i

void main ()

{

clrscr();

polyadd *pa = new polyadd();

node * headl;

node * head2;

node * head3;

headl = new node();

head2 = new node();

M.S. University - D.D.C.E.
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head3 = new node();

cout<<”"Enter first polynomial”;
pa->crpoly (headl) ;

cout<<”Printing first polynomial”;
pa->print (headl) ;

cout<<”Enter second polynomial”;
pa->crpoly (head2) ;

cqut<<”Printing second polynomial”;

pa->print (head2) ;

pa->padd (headl->next, head2->next, head3l);

cout<<endl<<"printing after addition";
pa->print (head3) ;

cout<<endl;

}

Sample Output:

Enter first polynomial

input a pair of numbers as ‘coef,expo’':
input '0,0' to stop entering,

input the coefficient 2

input the exponent 2

input a pair of numbers as 'coef,expo’':
input 'O;O' to stop entering,

input the coefficient 1

input the exponent 1

input a pair of numbers as 'coef,expo’:
input '0,0' to stop entering,

input the coefficient 0

input the exponent 0

Printing first polynomial

Coefficient is 2

Exponent is 2

Coefficient is 1

Exponent is 1

Enter second polynomial

input a pair of numbers as 'coef,expo’':

input '0,0' to stop entering,
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input the coefficient 3

input the exponent 3

input a pair of numbers as 'coef,expo':
input '0,0' to stop entering,

input the coefficient 1

input the exponent 1

input a pair of numbers as 'coef,expo’:
input '0,0' to stop entering,

input the coefficient 0

input the exponent 0

Printing after addition

Coefficient is 3

Exponent is 3

Coefficient is 2

Exponent is 2

Coefficient is 2

Exponent is 1

2.4 ADT OF STACKS

A stack is a dynamic structure ie. it changes as elements are added to and removed from it. The
operation that adds an element to the top of a stack is usually called PUSH and the operation that
takes the top element off the stack is called POP. When we start using the stack for the first time, it
must be empty, so we need to create an empty stack. We must also have an operation to check
whether a stack has something in it to pop or not. For particular implementations one may need to
check whether a stack is full or not. ADT of such operations are given as follows:

.AITfSpa@%mhbnjbrShuks

Value definition: A stack can contain anything of the type its implementing data structure is defined,
Le. integers, characters, complex records etc. :

Definition clause: A stack as explained is a list of elements in which the item added most recently is
taken out first, i.e. the Last item In is the First one Out. Therefore, a stack can be defined as a LIFO
list of elements.

Operations:

1. Create:
Function: initializes stack to an empty state.
Precondition: none.

Postcondition: stack is created and is empty.
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2.  Push:
Function: adds new element to the top of the stack.
Precondition: stack is created and is not full.
Postcondition: original stack plus new element added on top.
3. Pop:
Function: removes top element from the stack.
Precondition: stack is created and is not empty.
Postcondition: original stack with top element removed.
4.  Empty:
Function: tests whether stack is empty.
Precondition: stack is created.

Postcondition: answer as yes or no depending on the status of the stack; no change in stack
contents.

5.  Full:
Function: tests whether stack is full.
Precondition: stack is created.

Postcondition: answer as yes or no depending on the status of the stack; no change in stack
contents. ' ‘

6. Destroy:
Function: removes all elements from stack, leaving the stack empty.
Precondition: stack is created.
Postcondition: stack is empty.

These are the ADT specifications for some of the operations, which are commonly performed on
stacks. Reader can think of more such operations depending on a particular situation and requirement
and can write ADT for them on the same lines.

2.5 IMPLEMENTATION

A stack can be implemented using both static and dynamic implementations, i.e. the space can be
allocated at compile time itself or at the execution time of the program. Each implementation has its
own advantages and disadvantages, which we will consider later.

2.5.1 Implementing a Stack using an Array

Since all elements of the stack are of the same type, an array can be used to contain them. We can store
elements in sequential slots in the array, placing the first element pushed in the first array position, the
second element in the second array position and soon.
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We also need to know how to find the top element when we want to pop and where to put the new
element when we push. Although, we can access any element of an array directly, we have to confirm
to the stack restriction of “LIFO ”. So, we will access the stack elements only through the top, not
through the bottom or through the middle.

Therefore, even though the representation of the stack may be a random-access structure such as an
array, the stack itself as a logical entity is not randomly accessed. We can use its top element only. In
the array representation, a variable ‘top’ keeps track of the top position of the stack. An empty stack is
signaled by stack top being zero and a full stack by top greater than the last storage location.

In the following programs, stack is an array of size MAX’ and top is a variable, which keeps track of
top position of the stack. Before writing the actual code, let us try and write an algorithm for it.
Algorithm

Step 1: Start.

Step 2: Declare a stack of fixed size.

Step 3: Insert elements into the stack and display the status of the stack after each insertion.
Step 4: Insert values into the stack until the stack is full.

Step J: Start the pop operation and display the status of the stack after each pop operation.
Step 6: Continue wit h the pop operation until the stack is empty.

Step 7: End.

PnngM

To implement a stack using arrays.

#include<iostream.h>

#include<stdlib.h>

#include<stdio.h>

#include<conio.h>

class IntStack

{

protected:

int count;

public:

IntStack(int num)

.

top = 0;

maxelem = num;

S = new int[maxelem];

count =0;

}

int push(int t)
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{

if (top == maxelem)
return maxelem;
s[top++] = t;
count++;

return count;

}

int pop ()

{

if (top < 0)

{

return (-1);

}

top = top-1;
cout<<"top elelmnt is " <<s[top];

return (s[topl);

}

void display_pop()

{

if (top < 0)

{

cout << "{empty)\n";
return;

}

for (int t=top;t>=0;t--)
cout << endl<<s[t] << " u;

cout << "\n";

}

void display_ push()
. .

if (top < 0)

{

cout << " (empty)\n";
return;

}

for (int t=0;§<top;t++)
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cout << s[t] << "
cout << "\n";

}

int empty ()

{

return top == 0;
}

private:

int *s;

int top:;

int maxelem;

};

void main()

{

IntStack *s = new IntStack(100);

. int 4;
int count;

clrscr();

count = s->push(l);

s->display_push{() ;

count = s->push(2);

s->display push();

count = s->push(3);

s->display_push();

count = s->push(4);

s->display_push();

for{int i=0;i<count;i++)

{

s->pop (};
s->display_pop();
}

getch () ;

}

7
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2.5.2 Implementing Stacks using Linked Lists

As we know, the linked lists use the concept of dynamic memory allocation, i.e. memory is allocated as
and when needed. Unlike the array version, this implementation has no program imposed maximum
stack size. Nodes are allocated dynamically, using the new operator, as and when needed. If the call to
new fails, then it returns NULL and it is assumed that memory is full. In case of successful memory
allocation, the new structure is logically added. An empty stack is represented by stack top (stack
pointer) pointing to NULL. Before writing the actual code, let us write an algorithm for the program.
Algorithm

Step 1: Start.

Step 2: Declare the structure of the linked list.

Step 3: Insert elements through the top of the linked list and increment the top position by 1 after each
insertion.

Step 4: Insert the elements into the list until it is full.

Step 5: Perform the pop operation by decrementing the top position by 1 after each pop.
Step 6: Display the list after every pop operation until the list is empty.

Step 7: End.

Program

To implementing stacks using linked lists.

/* program to show push and pop operations using linked lists*/
//Implementation of stack using Linked Lists
#include<iostream.h>

#include<conio.h>"

#include<stdio.h>

struct node

{

int data;

node *link;

}:

class stack

{

private:

node *top;

public:

stack ()

{

top=NULL;
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}

void push(int item);
int pop();

~stack ()

{

if (top==NULL)
return;

node *temp;

while (top!=NULL)

{

temp=top;
top=top->link;
delete temp;

}

}

}i

veid stack:: push (int item)
{

node *temp;

temp=new node;

if (temp==NULL)
cout<<endl<<"stack is Full";
temp->data=itemn;
temp->link=top;
top=temp;

}

int stack:: pop()

{

if (top==NULL)

{

cout<<endl<<"Stack is Empty";
return NULL;

3

node *temp;

int item;

temp=top;

M.S. University - D.D.C.E.
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item=temp->data;
top=top->1link;

delete temp;

return item;

}

void main()

{

clrscr();

stack s;

s.push(11l);

s.push(12);

s.push(13);

s.push(14);

s.push(15);

int i=s.pop();

cout<<endl;

cout<<"Item popped=" <<i<<endl;
i=s.pop();

cout<<"Item Popped="<<i<<endl;
i=s.pop();

cout<<"Item Popped="<<i<<endl;
i=s.pop();

cout<<"Item Popped="<<i<<endl;
i=s.pop();

cout<<"Item Popped="<<i<<endl;
i=s.pop();

cout<<"Item Popped="<<i<<endl;
getchr () ;

}

2.6 ANALYSIS OF STACK IMPLEMENTATIONS

As stated in earlier lesson, an array variable of MAX stack size will take the same amount of memory,
no matter how many array slots are actually used. Therefore, we need to reserve space for the
maximum possible. If more elements need to be stored, then we may fall short of memory. Also, if
elements stored are very less, we may have a lot of unused space. On the other hand, the linked
implementation using dynamically allocated storage space only requires space for the number of
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elements actually present in the stack at run time. But, the elements are larger since we must store the
link (the next field) along with the user’s data.

Apart from the space requirement, the two implementations can be compared on other criteria also.
For example, programming efforts and program complexity. We can compare the efficiency of the two
representations with respect to each other in terms of Big Oh notation.

L. Create operation: In both implementations, operations like creating a stack have measure O(1). In
an array implementation, only the stack has to be declared using arrays. Also, in the linked
implementation, only the memory for the first node has to be allocated. Therefore, a constant
amount of work is involved at all times.

2. Empty or full operation: In both implementations, operations like checking whether a stack is full
or empty have Big Oh measure O(1) because the algorithm has to check for the presence of just
one element. '

3. Push or pop operation: In push or pop operations, the number of elements in the stack do not
affect the amount of work done by these operations. Because, in both operations we directly
access the top of the stack, i.e. only one element. Therefore, push and pop have measure O(1).

4. Destrgy operation: Probably, this is the only operation amongst the basic ones, which differs from
one implementation to other. In the array version, we just have to set the top field to zero, so it is
an O(1) operation. But, in the linked version, we must process every node in the stack to free the
node space.

Therefore, the operation is O(n) where n is the number of nodes in the stack.

In all, the two implementations are almost equivalent in terms of amount of work they do. Since the
destroying operation is not widely used, the difference is not significant. The Table 2.1 summarizes the
Big Oh measures of various operations on the two implementations.

Table 2.1: Big Oh Measure of Common Stack Operations

Operations | Array Linked
Implementation Implementation
Create Oo(1) O(1)
Empty o) Oo(1)
Full o(1) O(1)
Push 0Q) 0(1)
Pop o(1) o(1)
Destroy Oo(1) O(n)

The decision to use one of the two implementations depends on the situation.

Linked implementation is more flexible and is preferable where the number of stack elements vary
greatly. It wastes less space when the stack is small. When stack size is unpredictable, linked
implementation is preferable. Array implementation is short, simple and efficient. When we are sure
that we will not need to exceed the declared stack size, the array implementation is a good choice.

For example, if a customer database for a bank is to be maintained, then the linked implementation
would be preferable because the number of customers is expected to vary greatly. On the contrary, if a
fixed list of students of a class is to be maintained, array implementation would be more convenient.
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Examples: A stack is an appropriate data structure when information must be saved and then later
retrieved in reverse order. Any situation requiring to store a previous step and coming back to it in
future may be a good one to use a stack. Following are some examples using stack as their data structure.

Reversing an Input Text Line
Brief

As a simple example of using stacks, let us try to make a function that will read a line of input and will
then write it out backward. We can accomplish this task by pushing each character onto the stack as it
is read. When we come to end of the input, we will pop characters off the stack and they will come off
in the reverse order.

Program

To reverse an input text line.
#include<stdio.h>

#include<stdlib.h>

#define MAX 10 /*defining stack size*/

main() /*main starts here*/
{
int top=0;

char stack[MAX],c; /*declaring a character stack*/
clrscr();

cout<<"\n enter the sequerice of characters:";
while((c=getchar())!='\n') /*accepting the text*/

{

stack[topl=c;

Lop++;

}

cout<<"\n the reversed string is:"; //printing the text in
//reverse order//

while(top!=0)

{

cout<<stack[top-11;

top--;

}

}

/*main ends here*/

Validating an Expression by Parenthesis Matching

Brief

Consider a mathematical expression that includes several sets of nested parentheses, for e.g.

(a-((b+c(d))
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We want to make sure that the parentheses are nested correctly, i.e.

1. We want to check that there are equal numbers of right and left parentheses.
2. Every right parenthesis is preceded by a matching left parenthesis.
Expressions such as

((a+b)

violate condition 1, and expressions such as-

Ja+b(-c

violate condition 2.

Before writing the actual code for the program let us write an algorithm for it and try to understand
the logic.

Algorithm

Step 1: Start.

Step 2: Declare a character array to store opening braces.
Step 3: Start accepting the expression.

Step 4: If the character is an opening brace, e.g. ‘(" or {* or’[, push it onto the stack. If successive
opening braces, keep pushing them on the stack.

Step S: If the character is a closing brace, e.g. )’ or’}’ or’T,
1. Check if the stack is empty.

2. If the stack is empty, it means there was no corresponding opening brace for the closing brace.
Therefore, the expression is invalid.

3. If the stack is not empty, pop an element from the stack.

4. If the popped opening brace corresponds to the closing brace then the expression is valid.
5. Else the expression is invalid.

Step 6: When we come to the end of accepting the expression,

1. If there are still some opening braces left in the stack, it means that the expression is invalid.
2. If the stack is empty, expression is valid.

Step 7: End.

/*Program: To validate an expression by matching left and right parenthesis*/

//A PROGRAM TO TEST FOR THE MATCHING PARENTHESIS IN AN // EXPRESSION.
#include<iostream.h>

#include<stdio.h>

#include<stdlib.h>

#include<conio.h>
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#define MAX 10
class stk

{

public:

char stack[MAX];
char c,ele;

int top;

stk ()

{

top=0;

}

int push(char c)
{

stack[top]=c;
return ++top;

}

char pop ()

{
ele=stack[top-11;
stack[top-1]=0;
top--;

return ele;

}

};

void main{()

{

clrscr();

stk s;

int flag=1, top;
int tFlag =0;
char ret;

char c;

system("Clear");

cout<<"Enter the Expression";

while((c=getchar())!='\n")
{

Lists, Stacks and Queues 49
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if(c==' (" || c=="{" |le=='1")
{

top = s.push(c);

tFlag = 1;

}

else

if(e==")"|| e=="1" [[e=="}")
{

if (top==0)

{

flag=0;

break;

}

else

{

ret = s.pop();
1f((ret=='('&&c==')")||(ret=="{'&&c=="1")||(ret=="["&& c=='1"))
{

tFlag =0;

}

else

{

flag=0;

break;

}

}

}

}

if(s.stack[0]!=0)

{

flag=0;

}

if (flag==1){
cout<<"Expression is valid";}

else if(flag==0){

cout<<"Expression is invalid.";}
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getche() ;
}

We have tried to keep the above program as simple as possible, because our aim was to illustrate the
concept of stacks and not of making an extensive expression evaluator. This is why we have made
some assumptions, which are as follows:

Any expression is to be contained in brackets, for e.g. the following expression will not work with the
above program:

a+(b+c)-d
Rather, it has to be in the following format:
(a+(b+c)-d)

The reason for using a stack in this problem should be clear. The last parenthesis to be opened should
be the first one to be closed. This is simulated by a stack in which the last element to arrive is the first
to leave. Each element on the stack represents a parenthesis that has been opened but has not yet been
closed. Pushing an item onto the stack corresponds to an opening brace and popping an item from the
stack corresponds to closing a parenthesis.

(= {a+(——-

{a+(b-c) {a+(b-c)

Figure 2.14
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The Figure 2.14 depicts the contents of the stack at various stages of processing the for expression:
{a+ (b0}

Postfix Expression Evaluation

Brief

The sum of 2 and 3 is represented normally as 2+ 3. This is called infix notation. The same sum can be
represented as +23, which is called prefix notation, and 23+, which is called postfix notation.

The prefixes “in”, “pre” and “post” refer to the relative position of the operator with respect to the
two operands. In prefix notation, operator is before the two operands. In infix notation, operator is in
between the two operands. In postfix notation, operator comes immediately after the two operands.
Reader should gather more information on various notations in relevant litsrature.

Postfix notation has some obvious advantages over the most commonly used infix notation.
1. Need for parenthesis is eliminated.
2. Knowledge of operator precedence is not required.

We can try to develop a program for evaluating a postfix expression. Each operator encountered refers
to the previous two operands. Each time we come across-an operand we push it on to a stack. When
we reach an operator, its operands will be the two top elements on the stack. We can pop these two
elements, perform the operation on them and push back the result on to the stack.

It is then available for use with the next operator. The following program evaluates a postfix
expression using this method. But let us write an algorithm first.

Algorithm

Step 1: Start.

Step 2: Declare the structure of the stack.

Step 3: Accept an expression from the user (ex: 1+2 or 2*2 etc.).

Step 4: Check if the operator is:

1. 4+, then perform addition between the values and store as result.

2. “2, then perform subtraction between the values and save as result.

3. ¥ then perform multiplication between the values and store as result.
4./, then perform division between the values and store as result.

Step J: Push the result obtained from the expression and store it on the top position of the stack.
Step 6: Display the result on the screen.

Step 7: End.

Sample Output.

Enter the expression: 49%5+

The result is 41.
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Stack _for Sub-programs

This is one of the most important applications of stacks. What happens within the computer when
sub-programs are called? The system (or the program) must remember the place where the call was
made, so that it can return there after the sub-program is complete. It must also remember all the local
variables, CPU registers, and other data, so that information is not lost while the sub-program 1s
working. We can think of all this information as one large structure, a temporary storage area for each
sub-program.

Suppose that we have 3 sub-programs called A, B, and C, and suppose that A invokes B and B invokes
C. Then B has not completed its work until C has finished and returned. Similarly, A is the first to
start work, but it is the last to be finished, not until after B has finished and returned. Thus the
sequence in which this activity proceeds is summed up as the property last in, first out. If we consider
the machine’s task of assigning temporary storage areas for use by sub-programs, then those areas
would be allocated in a list with this same property, that s, in a stack.

The example is represented in the Figure 2.15.

>
B B B
A A A A A

Figure 2.15: Stack for Sub-programs at Various Stages

2.7 ADT OF QUEUES

A queue is an ordered collection of items from which items can be deleted from one end (called the
front of the queue) and into which items can be inserted at one end only (called the rear of the queue).
As opposed to stacks, queues are FIFO lists. The element that was the First to be In, will be the First
to be Out. Put in other words, the element that has spent the longest time in the queue, will be the
first to be taken out. This is opposite to a stack, in which we know that the element that has spent the
least time, is the first to be out, 1.e. LIFO.

There are various examples of queues in the real world. A line at a railway counter or a bus stop is
familiar examples of queues. The person first in the queue will be the first to get the ticket. Similarly,
any new passenger will have to stand at the back of the queue.

To add elements to a queue we access the rear of the queue. To remove elements we access the front.
The middle elements are logically inaccessible, even if we physically store the queue elements in a
random access structure such as an array.

The essential property of the queue is its FIFO access.
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As 1t 1s clear by now, there are two operations that can be applied to a queue. First, new elements are
added to the rear of the queue. We will call this operation enterq. We can also take the elements off the
front of the queue. We will call this operation exitq.

We are also required to check whether the queue contains anything or is empty.

Theoretically, we can always enter in a queue, for in principle, a queue is not limited in size. But
certain implementation, for e.g. an array implementation, requires us to check whether the data
structure is full, before entering a new element. Therefore, we can also have an operation for this
purpose. Before doing anything, we also need to create a queue and initialize it to an empty state. Also,
we might want to delete all elements of the queue, leaving an empty structure.

Following is the ADT representation of some of the common operations that can be performed on
queues.

® Value definition: A queue can contain anything of the type its implementing data structure is
defined, i.e. integers, characters, complex records, etc.

® Definition clause: A queue as explained is a list of elements in which the item added first is taken
out first, i.e. the First item In is the First one Out. Therefore, a queue can be defined as a FIFO list
of elements.

Operations:
1. Create:
Function: initializes queue to empty state.
Precondition: none.
Postcondition: A queue is created and is empty.
2.  Enterg:
Function: adds new element at the rear of the queue.
Precondition: queue is created and is not full.
Postcondition: original queue plus new element added at the rear.
3.  Exit:
Function: removes front element of the queue.
Precondition: queue is created and is not empty.
Postcondition: original queue minus the front element.
4. Empty:
Function: checks whether the queue is empty.
Precondition: queue is created .
Postcondition: answers ‘yes’ or ‘no’s original queue unchanged.
5. Full:

Function: checks whether the queue is full.
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Precondition: queue is created.
Postcondition: answers ‘yes’ or ‘no’; original queue unchanged.

Students can try their own ADT specifications for any other operations that they may come across
with various implementations.

The enterq operation can always be performed, since there is no limit to the number of elements a
queue may contain. So, an overflow situation should never occur. The exit operation, however, can be
applied only if the queue is nonempty.

The result of an illegal attempt to remove an element from an empty data structure is called
underflow.

2.8 QUEUE IMPLEMENTATIONS

2.8.1 Array Implementation of Queues

Representation of a queue as arrays is somewhat different than a stack. In addition to a
one-dimensional array, we need 2 variables, front and rear. Front points to the first element of the
queue and rear to the last element of the queue. Thus, front=rear, when there are no elements in the
queue. The initial condition is

front=rear=0.

Initial Queue
front
rear
Rear

Queue after Inserting two Elements

front

!

gle 1 ele 2

rear




56 Advanced Data Structure M.S. University - D.D.C.E.

Quene after Deleting an Element

gle 2
fear

Figure 2.16: Various Stages in Array Implementation of Queues
A tull queue is shown by rear, which is equal to the last storage section.

The following program shows insertion and deletion operations on a queue using array. Before writing
the actual code, let us try to write an algorithm for the program. ‘

Algorithm
Step 1: Start.
Step 2: Declare the structure of the queue.

Step 3: Insert the elements into the queue from the rear and display the status of queue after each
insertion,

Step 4: Continue insertion until the queue is full.
Step J: Initiate the pop operation by popping the elements from the front.
Step 6: Display the queue after each pop operation.
Step 7: End.
Program
To delete and insert from a queue.
//CREATION OF QUEUES USING ARRAYS
#include<iostream.h>
#include<conio.h>
#include<stdio.h>
#define MAX 10
class queue
{
private:
int arr[MAX];
int front,rear;
public:
" gueue ()

{
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front =-1;

rear=-1;

}

void addg(int item)
{

if (rear==MAX-1)

{
cout<<endl<<"Queue is Full";
return;

}

rear++;

arr[rear]=item;

cout<<endl<<"items added"<<arr[rear]<<endl;

if (front==-1)
front=0;

}

int delqg()

{

int data;
if(front==-1)

{
cout<<endl<<"Queue is empty";
return NULL;

}

data =arr[front];
if (front==rear)
front=rear=-1;
else

front++;

return data;

}

Y

void main()

{ clrscx();
queue a;

a.addg(1ll);
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a.addg(21);

a.addqg(31);

a.addqg(41) ;

a.addq(Sl);

int i=a.delq();

cout<<endl<<"Ttem Deleted="<<i<<endl;
i = a.delg();

cout<<endl<<"Item Deleted="<<i<<endl;
i= a.delqg();

cout<<endl<<"Item Deleted="<<i<<endl;
i= a.delg();

cout<<endl<<"Ttem Deleted="<<i<<endl;
i = a.delq();

cout<<endl<<"Item Deleted="<<i<<endl;
getche () ;

}

The above design has a shortcoming. As we enter and delete elements from the queue, the front and
rear locations also shift forward i.e. as we delete the first item from the queue, the second location
becomes the front. Therefore, we loose the first storage location for future storage. As we continue
entering and deleting elements, the total storage space available goes on decreasing. Since, we are using
arrays as our basic data structure for queues; this can be a serious drawback.

One solution to the above problem can be to shift all remaining elements up every time we remove an
element from the queue. But, this increases the overheads. To understand this, take a look at the
Figure 2.18.

Initial Queue

rear

Queue after Inserting two Elements

front

|

ele 1 ele Z
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Queue after Deleting an Element

front
gle 2
rear

Figure 2.17: Loosing a Storage Location

As you can see above, after taking out the front element of the queue, our front location has
incremented to the next element. Thus we have lost the first memory location. Hereafter, we only
have 6 locations to store data. Gradually, this space will go on decreasing.

One way of rectifying this problem is to shift the rest of the elements of the queue one space up each
time the front element is deleted, as said above. But if a queue is large, this will require a lot of effort.

The decision to use this design depends on the final use to which the queue will be put. If the number
of elements to be stored in the queue is large, there will be a lot of processing required to move up all
the elements. On the other hand, if the queue generally contains only a few elements, this movement
may not be much of an overhead. Thus, the complete evaluation of the design depends on the intended
use of the program. We will see other implementations to rectify this shortcoming as we proceed.

2.8.2 Linked Implementation of Queues

Unlike the array implementation, this version has no program imposed maximum queue size. Nodes
are allocated dynamically using new operator, as and when required. If the call to new fails, then it
returns NULL and is assumed that memory is full. In case of successful allocation, the new structure is

logically added.

To remove a node from a linked list, the node being pointed by the front pointer is removed and its
next node becomes the front node. Take a look at the following figure.

Existing Queue

h 4
r2
]

> NULL

stat ~ | !

Inserting another Node at the Rear

i [ T3 T3

WNULL

Deleting a Node from the Front

s Lt [ [

2.18: Linked Implementation of Queues

NULL
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The following program shows how to use linked lists to implement queues. Before writing the actual
code, let us write an algorithm for the program.

Algorithm
Step 1: Start.

Step 2: Declare the structure of the linked queue.

Step 3: Insert the elements in the linked queue and increment the rear by 1 after each insertion.
Step 4: Insert the elements until the queue is full.

Step J: Perform the pop operation by deleting the elements from the front of the linked queue.
Step 6: Display the status of the queue after each pop operation.

Step 7: End.

Program

To implement queues using linked lists.

/*this program uses linked lists to implement queues*/

// IMPLEMENTATION OF LINKED QUEUES
#include<iostream.h>
#include<stdio.h>
#include<conio.h>
struct node

{

int data;

node *1link;

Y

class gueue

{

privaté:

node *front, *rear;
public:

queue ()

{

front=rear=NULL;

} ,

void addg(int item)
{

node *temp;
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temp=new node;

if (temp==NULL)
cout<<endl<<"Queue is Full";
temp->data=item;
temp->1ink=NULL;
if (front==NULL)

{

rear=front=temp;
return;

}

rear->link=temp;
rear=rear->1link;

}

int delg()

{

if (front==NULL)

{
cout<<endl<<"Queue is Empty";
return NULL;

}

node *temp;

int item;
item=front->data;
temp=front;
front=front->1link;
delete temp;
return item;

}

~queue ()

{

if (front==NULL)
return;

node *temp;

while (front!=NULL)
{

temp=front;
front=front->link;

delete temp;
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}

}

Y

void main/()

{

clrscr();

queue a;

a.addg(11);

a.addg(21);

a.addg(31) ;

int i=a.delqg();

cout<<endl<<"The Item deleted="<<i;
i=a.delqg{();

cout<<endl<<"The Item deleted="<<i;
i=a.delqg{():;

cout<<endl<<"The Item deleted="<<i;
getche () ;

}

2.9 ANALYSIS OF QUEUE IMPLEMENTATIONS

An array of MAX queue size will take same amount of memory, no matter how many array slots are
actually used. The linked implementation using dynamically allocated storage space only requires
space for the number of elements actually in the queue at the run time, plus space for the external
pointers. However, the node elements are larger, since we must store the link as well as the user data.

We can also compare the relative “efficiency” of the two implementations, in terms of Big Oh.
Following are the Big Oh measurements of some of the common operations that are performed on
queues.

1. Create: In both implementations, create operation has a measure of O(1). It takes fixed amount of
work in any case.

2. Empty and full: In both implementations, these two operations have measure O(1) only. Because,
' the algorithm has to do only one operation, that of checking whether the queue contains
anything or not.

3. Enterq and exitq: These operations are also O(1) in both implementations.

The number of elements in the queue does not affect the work done by these two operations. Irf
both implementations, we can directly access the front and rear of the queue. Therefore, amount
of work done by these two operations is independent of queue size.

4. Deleting the entire queue: This operation differs from one implementation to other. The array
implementation just sets the front and rear indexes, so it is an O(1) operation. The linked
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implementation has to acces
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s each node and free it explicitly. Therefore, this operation has the

measure O(n), where n is the number of elements in the queue at that time.

As with the array and linked implemen
or less equivalent in terms of amount o

tation of stacks, these two implementations of queues are more
f work they do, possibly differing in one operation. Following

table summarizes the Big Oh measures of various operations on the two implementations of queues.

The answer to the question,
application.

Set ADT

A set is a collecti

Table 2.2: Big Oh Comparison of Queue Operations

Operations | Array Linked
Implementation | Implementation
Create o o)
Empty o) o)
Full O(1) o)
Enterq o(1) o)
Exitq o(1) o(1)
destroy o(1) O(n)

which implementation is better, depends on the requirements of your

on of bindings. Each binding consists of a key and a value. A key uniquely identifies

its binding; a value is data that is somehow pertinent to its key. Programming systems use sets often.
For example compilers and assemblers use sets to relate symbols to their meanings.

Set Interface

The Set interface should contain these function declarations:

Set T

void

void

int

int

int

const void
void

void

Set_new(int iEstimatedLength,

int (*pfCompare)(const void *pvKeyl, const void *pvKey2));

Set_free(Set_T oSet);
Set_clear(Set_T oSet);

Set_getLength(Set_T oSet);

Set_put(Set_T oSet, const void *pvKey, void *pvValue);

Set_remove(Set_T oSet, const void *pvKey);

#Set setKey(Set T oSet, const void *pvKey);
_8 yet_ pviey,

*Set_getValue(Set_T oSet, const void *pvKey);

Set_map(Set_T oSet,

void (*pfApply)(const void *pvKey, void **ppvValue, void *pvExtra),

void *pvExtra);
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Complex Number ADT

typedef struct {

float real;

float imag;

} COMPLEX;

COMPLEX makecomplex (float, float) ;
COMPLEX addc (COMPLEX, COMPLEX);
COMPLEX subc (COMPLEX, COMPLEX);
COMPLEX multc (COMPLEX, COMPLEX);
COMPLEX divc (COMPLEX, COMPLEX);
A String ADT

Most languages either have a built in string datatype or a standard library, so rare to create own string

ADT.

® A string datatype should have operations to:

® Return the nth character in a string.

® Set the nth character in a string to c.

® Find the length of a string.

® Concatenate two strings. “Alison” + “Cawsey” = “Alison Cawsey”

® Copy a string,

® Delete part of a string, (“Alison Cawsey” “Alison”)

® Modify and compare strings in other ways.

String Processing Algorithms

String processing algorithms are algorithms for processing sequences of characters or symbols e.g.,
® File compression ~ take a sequence, encode it as a shorter sequence.

® Cryptography - take a sequence, encode it so enemies can’t read it!

® String search - search for occurrences of one sequence within another.

® Pattern matching - find out if sequence matches some pattern.

® Parsing - Work out structure of a sequence, in terms of a grammar.

® Applications of more complex algorithms might include genome sequencing and analysis.

® We can start by looking at the relevant datatypes or classes for strings and sequences.~ Delete part
of a string. (“Alison Cawsey” _ “Alison”)

® Modify and compare strings in other ways.
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String Implementations

There are two main ways that strings may be:

Implemented: As a fixed length array, where the first element denotes the length of the string, e.g.,
[6,3,1,i,5,0,1,.....]. This is used as the standard string type in Pascal.

As an array, but with the end of the string indicated using a special ‘null’ character (denoted’_0), e.g.,
[a,Li,s,0,n, O,.....].

Memory can be dynamically allocated for the string once we know its length.

First implementation has disadvantages of all fixed length array implementations. But some operations
are efficient (e.g., finding length). » '

Second implementation has advantages of dynamic allocation of space; modifying string also may be
more efficient, as needn’t recalculate size.

Check Your Progress|

Define the following:
1. Stack

2. Linked Implementation

2.10 LET US SUM UP

An ADT is the logical picture of a data type plus the specifications of the operations required in
creating and manipulating objects of this data type. Basic operations performed on any type of data
structures are insert, modify, delete, search, sort etc. The operations performed on linked list are
create, insert, delete, modify etc. A single node of linked list consist of mainly two fields (1) data and
(2) pointer to the next node as shown below.

The other type of linked lists are:
e Circular linked lists.
e Doubly or two way linked lists.

In computing paradigm linked lists can be put to use for a variety of purposes. Also they can be used
to implement data structures like stacks and queues. An array is a list of elements in which each
element is accessible via an index. There are various algorithms available to implement the same task.
Hence it is necessary to analyze algorithms. Performance of a program depends on two factors - space
complexity and time complexity. Space complexity of a program is the amount of memory required to
execute the program successfully. In static allocation memory required by a program is known at
compile time whereas in dynamic allocation it can increase during the execution. Time complexity of a
program is the amount of time required to execute a program successfully. The order of magnitude of
an algorithm is the sum of the frequencies of all of its statements. Asymptotic notations calculate the
approximate time and space requirements of an algorithms. There are various types of asymptotic
notations viz. Big Oh, Omega, Theta etc. The major goals involved in the study of data structure are:

To identify and develop useful mathematical entities and operations and
e To determine what classes of problems can be solved using these entities and operations.

e Determine representations for abstract entities and implement them.
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A stack is an ordered list in which all insertions and deletions are done at one end, called the top. A
queue is an ordered list in which all insertions take place at one end, the rear, while all deletions take
place at the other end, the front. Unlike an array, the definition of stacks and queues provide for the
insertion and deletion of items. So, stacks and queues are dynamic, constantly changing objects.
Queues provide FIFO storage as opposed to LIFO storage provided by stacks. A stack is a dynamic
structure i.e. it changes as elements are added to and removed from it. The operation that adds an
element to the top of a stack is usually called PUSH and the operation that takes the top element off
the stack is called POP. Even though the representation of the stack may be a random-access structure
such as an array, the stack itself as a logical entity is not randomly accessed. Stacks and queues can be
implemented using arrays as well as using linked lists. As stated in earlier lessons, an array variable of
MAX stack size will take the same amount of memory, no matter how many array slots are actually
used. Therefore, we need to reserve space for the maximum possible. On the other hand, the linked
implementation using dynamically allocated storage space only requires space for the number of
elements actually present in the stack at run time. But the elements are larger since we must store the
link (the next field) along with the user’s data. Stack is an appropriate data structure when information
must be saved and then later retrieved A in reverse order. Any situation requiring to backtrack to
some earlier position may be a good one to use a stack. There are 2 operations that can be applied to a
queue. First, new elements are added to the rear of the queue. We will call this operation enterq. We
can also take the elements off the front of the queue. We will call this operation exitq. The result of an
illegal attempt to remove an element from an empty data structure is called underflow.

2.11 KEYWORDS

Stack: Stack is a data structure which stores data at the top.

Data Structure: It is a collection of data elements.

2.12 QUESTIONS FOR DISCUSSION
What do you understand by the term Abstract Data Type?

Differentiate between the Stacks and Queues on the basis of the storage of data.
What is the basic difference between stacks and queues?

What is a LIFO list and a FIFO list?

A A

What are the various functions that can be performed on stacks and queues?

Check Your Progress: Model Answers

1. Astack is a dynamic structure i.e. it changes as elements are added to and removed from it.
The operation that adds an element to the top of a stack is usually called PUSH and the
operation that takes the top element off the stack is called POP.

2. Linked implementation is more flexible and is preferable where the number of stack
elements vary greatly. It wastes less space when the stack is small. When stack size is
unpredictable, linked implementation is preferable.
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3.0 AIMS AND OBJECTIVES

After studying this lesson, you should be able to:

® Define trees

® Identify various characteristics of tress

®  Describe the representations in contiguous memory
® Explain the linked tree representation

® Traverse binary tree

® Traverse a binary tree

®  Search a binary tree

® Insert into a binary search tree

® Understand and use AVL trees

3.1 INTRODUCTION

While dealing with many problems in computer science, engineering and many other disciplines, it is
needed to impose a hierarchical structure on a collection of data items. For example, we need to
impose a hierarchical structure on a collection of data items while preparing organisational charts and
genealogies, to represent the syntactic structure of source programs in compilers. A tree is a data
structure that is used to model such a hierarchical structure on data items, hence the study of tree as
one of the data structures is important. This module discusses tree as a data structure.

3.2 TREES

A tree is a set of one or more nodes T such that
1. There is a specially designated node called root, and

2. Remaining nodes are partitioned into n > = 0 disjoint set of nodes T, T,,..,T, each of which is a tree.

Shown below in Figure 3.1 is a structure, which is tree.

ONORONORO

Figure 3.1: A Tree Structure
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" This is a tree because it is a set of nodes {A, B, C, D, E, F, G, H, I}, with node A as a root node, and
the remaining nodes are partitioned into three disjoint sets: {B, G, H, I}, {C, E, F} AND ({D}

respectively. Each of these sets is a tree individually because each of these sets satisfies the above
properties. Shown below in Figure 3.2 is a structure, which is not a tree:

OJOJONORC

Figure 3.2: A Non-tree Structure

This is not a tree because it is a set of nodes {A, B, C, D, E, F, G, H, I}, with node A as a root node,
but the remaining nodes cannot be partitioned into disjoint sets, because the node I is shared.

Given below are some of the important definitions, which are used in connection with trees.

3.2.1 Degree of Node of a Tree

The degree of a node of a tree is the number of sub-trees having this node as a root, or it is a number of
decedents of a node. If degree is zero then it is called terminal node or leaf node of a tree.

3.2.2 Degree of a Tree

It is defined as the maximum of degree of the nodes of the tree, i.e. degree of tree = max (degree (node
i) fori = 1ton).

3.2.3 Level of a Node

We define the level of the node by taking the level of the root node to be 1, and incrementing it by 1
as we move from the root towards the sub-trees i.e. the level of all the descendents of the root nodes
will be 2. The level of their descendents will be 3 and so on. We then define depth of the tree to be the

maximum value of level for node of a tree.

ORORORORO

Consider the tree given below:
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The degree of each node of the tree:

Node Degree

A 3

B 3

C 2

D 0

E 0

F 0

G 0
H 0

I 0

The degree of the tree: Maximum (Degree of all the nodes) = 3

The level of nodes of the tree:

Node Level

A 1

2

2

T (o |n|m|g o w
(U]

3.3 N-ARY TREE

A tree non of whose nodes has more than N children is known as N-ary tree. In other words, an
N-ary tree is a tree whose degree is at the most N. Note, however, that the degree of the nodes may be
less than N. Thus, a tree with degree 2 is called binary tree, with degree 3 is called ternary tree and so
on.

3.3.1 Binary Tree

Binary tree is a special type of tree having degree 2. In a binary tree no node of can have degree greater
than 2. Therefore, a binary tree is a set of zero or more nodes T such that

(1) There is specially designated node called as root of tree and

(i) The remaining nodes are partitioned into two disjoint sets T, and T, each of which is a binary
tree. T, is called as a left sub-tree and T is called right sub-tree or vice-versa.
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A binary tree is shown below (Figure 3.3).

ONENONRO

Figure 3.3: Binary Tree Structure
For a binary tree note that,
() maximum number of nodes at level i is 2%i-1

(i) if k is the depth of the tree then the maximum number of nodes the tree can have is
24 27 4224 20 =201

Also there are skewed binary trees like the one shown below in Figure 3.4

Left Skewed Right Skewed

Figure 3.4: Skewed Trees

3.3.2 Full and Complete Binary Tree

A binary tree of depth k can have maximum 2*-1 number of nodes. If a binary tree has fewer than 21
nodes, it is not a full binary tree.

For example,

fork = 3,

the number of nodes = 28] = 2>°-1 =8-1 = 7.
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A tull binary tree with depth k = 3 shown below in Figure 3.5.

® 00 ©

Figure 3.5: A Full Binary Tree

If a binary tree is full then we can number the nodes of binary tree sequentially from 1 to 21, starting
from the root node and at every level numbering the nodes from left to right.

A complete binary tree of depth k is a tree with n node in which these n nodes can be numbered
sequentially from 1 to n, as if it would have been the first n nodes in a full binary tree of depth k.

A complete binary tree with depth k =3 is shown below in Figure 3.6.

OO

Figure 3.6: A Complete Binary Tree

3.3.3 Representations in Contiguous Memory

If a binary tree is a complete binary tree, then it can be represented using an array capable of holding n
elements where n is the number of nodes in a complete binary tree. If tree is an array of n elements,
then we can store the data values of the i node of a complete binary tree with n nodes at an index i in
an array tree. That means we can map node i to i* index in the array, and the parent of node i will get
mapped at an index 1/2 whereas left child of node i gets mapped at an index 2i and right child gets
mapped at an index 2i + 1.

For example, a complete binary tree with depth k = 3, having the number of nodes n = 5, can be
represented using an array of 5 as show below in Figure 3.7.
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A B C D E

1 2 3 4 5

Figure 3.7: An Array Representation of a Complete Binary Tree having 5 Nodes and Depth 3

Shown below in Figure 3.8 is another example of an array representation of a complete binary tree
with depth k = 3, having the number of nodes n = 4.

Figure 3.8: An Array Representation of a Complete Binary Tree having 4 Nodes and Depth 3

In general any binary tree can be represented using an array. But we see that an array representation of
a complete binary tree does not lead to the wastage of any storage. But if we want to represent a binary
tree which is not a complete binary tree using an array representation, then it leads to the wastage of
storage as shown in Figure 3.9. :
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O O  ©
OO

A B C

D

F

G

4

6

7 8

9

10

11

Figure 3.9: An Array Representation of Binary Tree

3.4 LINKED TREE REPRESENTATION

An array representation of a binary tree is not suitable for frequent insertions and deletions, and
therefore we find that even though no storage is wasted if the binary tree is a complete one when array
representation is used, it makes insertion and deletion in a tree costly. Therefore instead of using an
array representation, we can use a linked representation, in which every node is represented as a
structure having 3 fields, one for holding data, one for linking it with left sub-tree and the one for
linking it with right sub-tree as shown below: v

Left Child

Data

Right Child

We can create such a structure by using the following C declaration:

struct tnode

{

int data;

struct tnode *1lchild;

struct tnode *rchild;

} *tptr;
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A tree representation using the above node structure is shown below in Figure 3.10.

A

? D ? Ni Ni Ni
Lol
Ni Ni

Figure 3.10: Linked Representation of a Binary Tree

3.5 BINARY TREE TRAVERSAL

This section discusses different orders in which a binary tree can be traversed. The algorithms for some
commonly used orders of traversal are also presented. It also discusses the issue of construction of a
unique binary tree given the orders of traversal.

3.5.1 Order of Traversal of Binary Tree

The following are the possible orders in which a binary tree can be traversed:

1) LDR
2) LRD
3) DLR
4) RDL
5) RID

6) DRL
Where,

L stands for traversing the left sub-tree,
R stands for traversing the right sub-tree, and D stands for processing the data of the node.

Therefore, the order LDR is the order of traversal in which we start with the root node, visit the left
sub-tree first, then process the data of the root node, and then go for visiting the right sub-tree. Since
the left, as well as right sub-trees are also the binary trees, the same procedure is used recursively while
visiting the left and right sub-trees.

The order LDR is called inorder, the order LRD is called postorder, and the order DLR is called
preorder. The remaining three orders are not used. If the processing that we do with the data in the
node of tree during the traversal is simply printing the data value, then the output generated for a tree
given below in Figure 3.11, using the inorder, preorder and postorder is the one shown below in
Figure 3.11 itself.
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Inorder: DBHEIAFCG
preorder: ABDEHICFG
postorder: DHIEBFGCA

Figure 3.11: A Binary Tree along with its Inorder, Preorder and Postorder

If an expression is represented as a binary tree then the inorder traversal of the tree gives us an infix
expression, whereas the postorder traversal gives us posfix expression as shown below in Figure 3.12.

O QO
ONENG

Figure 3.12: A Binary Tree of an Expression along with its Inorder and Postorder

Inorder:a + b*c+d*e
Postorder: abe* +de* +

Given an order of traversal of a tree it is possible to construct a tree. For example consider the
following order:

Inorder = DBEAC
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We can construct the binary trees shown below in Figure 3.13 using this order of traversal:

Figure 3.13: Binary Trees Constructed using Given Inorder

Therefore, we conclude that given only one order of traversal of a tree it is possible to construct a
number of binary trees, a unique binary tree is not possible to be constructed. For construction of a
unique binary tree we require two orders in which one has to be inorder, the other can be preorder or
postorder.

For example, consider the following orders:
lnorder = DBEAC
Postorder = DEBCA
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We can construct a unique binary tree shown in Figure 3.14 using these orders of traversal.

Figure 3.14: A Unique Binary Constructed using the Inorder and Postorder

3.5.2 Procedure for Inorder Traversal

void inorder(tnode *p)

{

inorder (p->1child) ;
printf (p->data);

inorder (p->rchild);

}
A non-recursive/iterative procedure for traversing a binary tree in inorder is given below for the
purpose of doing the analysis.

void inorder (tnode *p)
{
tnode *stack[100];
int top;
{
top = 0;
if(p != NULL)
{
top = top + 1;
stack([top] = p;
p = p->1child;
while(top > 0)
{
while(p !'= NULL)
/*push the left child onto the stack*/
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top = top + 1;
stack([top] = p;
P = p->lchild;

}

p = stackltop];

top = top-1;

‘printf(p->data) ;

p = p->rchild;

if(p != NULL)

/*push right child*/
{
top = top+1l;
stack(top] = p;
p = p->lchild;

}
Analysis

Consider the iterative version of the inorder given above. If the binary tree to be traversed is having n
nodes, then the number of il links are n + 1. Since every node is placed on the stack once, the
statements stack[top] := p and p := stack[top] are executed n times. The test for nil link will be done
exactly n+ 1 times. So every step will be executed no more than some small constant times n, hence
the order of algorithm O(n). Similar analysis can be done to obtain the estimate of the computation
time for preorder and post order.

3.5.3 Preorder Traversal
void preorder{tnode *p)

{
if(p != NULL)

{
printf (p->data);
preorder (p->1child); -
preorder (p->rchild) ;
}
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3.5.4 Postorder Traversal

void postorder (tnode *p)

{
if(!'p)
{
postorder (p->1child);
postorder (p->rchild);
printf (p->data);
}
}

Consider the following example.

Given the preorder and inorder traversal of a binary tree. Draw the tree and write down its postorder
traversal.

Inorder:Z, A, Q,P,Y,X,C, B
Preorder: Q, A, Z,Y,P,C, X, B

To obtain the binary tree take the first node in preorder, it is a root node, we then search for this node
in the inorder traversal, all the nodes to the left of this node in the inorder traversal will be the part of
the left sub-tree, and all the nodes to the right of this node in the inorder traversal will be the part of
the right sub-tree. We then consider the next node in the preoder, if it is a part of the left sub-tree, then
‘we make it as left child of the root, otherwise if it is part of the right sub-tree then we make it as part
of right sub-tree. This procedure is repeated recursively to get the tree shown below in Figure 3.15:

Figure 3.15: A Unique Binary Tree Constructed Using the Inorder and Postorder
The post order for this tree is:
Z,A,P,X,B,C,Y,Q
The following function counts the number of leaf node in a binary tree.

int count{tnode *p)

{
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if (p == NULL)
count = 0;

else

if((p—>lchild == NULL) && (p->rchild == NULL))
count = 1;

else
count = count (p->1lchild) + count(p->rchild);

}

The following procedure swaps the left and the right child of every node of a given binary tree.

void swaptree(tnode *p)

{
tnode *temp;
if(p !'= NULL)
{
swaptree (p->1child);
swaptree (p->rchild) ;
temp = p->1child;
p->1child = p->rchild;
p->rchild = temp;
}
}

The following function checks whether the two binary trees are equal or not.

boolean equal {tnode *pl, tnode *p2)

{

boolean ans;
if ((pl == NULL) && (p2 == NULL))

ans = true;
else
if(((pl==NULL) && {p2!=NULL)) | | { (p1!=NULL) && (p2==NULL) ) )
ans = false;
else

while((pl != NULL) && {(p2 != NULL))

{

if(pl != NULL) && (p2 != NULL))

if ((equal{pl->1child,p2->1child))
ans = equal (pl->rchild,p2->rchild);
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else

false;

ans
else

ans false;

H

}
return(ans) ;
)
The following function creates exact copy of a given binary trees.

Tnode *copytree{tnode *p)

{
tnode *q;
{
if(p == NULL)
return (NULL) ;
else
{
d = new(tnode);
g->data = p->data;
g->1lchild = copytree(p->1child);
d->rchild = copytree(p->rchild);
return(q) ;
}
}
3.6 BINARY SEARCH TREE

A binary search tree is a binary tree which may be empty, and every node contains an identifier and
1. identifier of any node in the left sub-tree is less than the identifier of the root

2. identifier of any node in the right sub-tree is greater than the identifier of the root and the left
sub-tree as well as right sub-tree both are binary search trees.
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A tree shown below in Figure 3.16 is a binary search tree:

Figure 3.16: A Binary Search Tree

A binary search tree is basically a binary tree, and therefore it can be traversed is in-order, preorder,
and post-order. If we traverse a binary search tree in inorder and print the identifiers contained in the
nodes of the tree, we get a sorted list of identifiers in the ascending order.

A binary search tree is an important search structure. For example, consider the problem of searching
a list. If a list is an ordered then searching becomes faster, if we use a contiguous list and binary search,
but if we need to make changes in the list like inserting new entries and deleting old entries. Then it is
much slower to use a contiguous list because insertion and deletion in a contiguous list requires
moving many of the entries every time. So we may think of using a linked list because it permits
insertions and deletions to be carried out by adjusting only few pointers, but in a linked list there is no
way to move through the list other than one node at a time hence permitting only sequential access.
Binary trees provide an excellent solution to this problem. By making the entries of an ordered list
into the nodes of a binary search tree, we find that we can search for a key in O(n log n) steps.

3.6.1 Creating a Binary Search Tree

We assume that every node a binary search tree is capable of holding an integer data item and the links
which can be made pointing to the root of the left and the right sub-tree respectively. Therefore, the
structure of the node can be defined using the following declaration:

struct tnode

{
int data;
tnode *1lchid;
tnode *rchild;
}

To create a binary search tree we use a procedure named insert which creates a new node with the data
value supplied as a parameter to it, and inserts into an already existing tree whose root pointer is also
passed as a parameter. The procedure accomplishes this by checking whether the tree whose root
pointer is passed as a parameter is empty. If it is empty then the newly created node is inserted as a
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of temp 1 in another variable temp2, compares the data value of the node pointed to by temp 1 with
the data value supplied as a parameter, if the data value supplied as a parameter is smaller than the data
value of the node pointed to by temp 1 then it copies the left link of the node pointed by temp 1 into
temp 1 (goes to the left), otherwise it copies the right link of the node pointed by temp 1 into temp
1(goes to the right). It repeats this process till temp 1 becomes nil. When temp 1 becomes nil, the new
node is inserted as a left child of the node pointed to by temp? if data value of the node pointed to by
temp2 is greater than data value supplied as parameter. Otherwise the new node is inserted as a right
child of node pointed to by temp2. Therefore the insert procedure is

void insert(tnode *p, int val)
{

tnode *templ, *temp2;

if (p == NULL)

{
P = new(tnode);
p->data = val;
p->1child = NULL;
p->rchild = NULL;

}

else

{
templ = p;

while(templ != NULL)
{
temp2 = templ;
if (templ->data > val)
templ = templ->left;
else
templ = templ->right;
}
if (temp2->data > val)
{
temp2->left = new(tnode):
temp2 = temp2->left;
temp2->data = val;

temp2->left

NULL;
temp2->right= NULL;
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else

{
temp2->right = new(tnode);
temp2 = temp2->right;
temp2->data = val;
temp2->left = NULL;
temp2->right = NULL;

}

}

3.6.2 Deletion of a Node from Binary Search Tree

To delete a node from a binary search tree the method to be used depends on whether a node to be
deleted has one child, two children, or has no child.

3.6.3 Deletion of a Node with two Children

Consider the binary search tree shown below in Figure 3.17:

Figure 3.17: A Binary Tree before Deletion of a Node Pointed to by x
If we want to delete a node pointed to by x, then we can do it as follows:

Let y be a pointer to the node which is the root of the node pointed by x. We store the pointer to the
left child of the node pointed by x in a temporary pointer temp. We then make the left child of the
node pointed by y to be the left child of the node pointed by x. We then traverse the tree with the
root as the node pointed by temp to get its right leaf, and make the right child of this right leaf to be
the right child of the node pointed by x, as shown below in Figure 3.18:
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Figure 3.18: A Binary Tree after Deletion of a Node Pointed to by x

temp = x->1child;
y->1child = x->1child;
while(temp->rchild != NULL)

temp = temp->rchild;
temp->rchild = x->rchild;
x->1child = NULL;
x->rchild = NULL;
delete(x);
Another method is store the pointer to the right child of the node pointed by x in a temporary pointer
temp. We then make the left child of the node pointed by y to be the right child of the node pointed

by x. We then traverse the tree with the root as the node pointed by temp to get its left leaf, and make
the left child of this left leaf to be the left child of the node pointed by x, as shown in Figure 3.19:

Figure 3.19: A Binary Tree after Deletion of a Node Pointed to by x
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temp = x->rchild;
y->1child = x->rchild;
while (temp->1child !'= NULL)
temp = temp->1child;
temp->1child = x->1child;
x->1child = NULL;
x->rchild = NULL;

delete(x);

3.6.4 Deletion of a Node with one Child

Consider the binary search tree shown below in Figure 3.20.

Figure 3.20: A Binary Tree before Deletion of a Node Pointed to by x
If we want to delete a node pointed to by x, then we can do it as follows:

Let y be a pointer to the node which is the root of the node pointed to by x. Make the left child of the
node pointed by y to be the right child of the node pointed by x, and dispose the node pointed by x as
shown below in Figure 3.21:
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Figure 3.21: A Binary Tree after Deletion of a Node Pointed to by x
y->1child = x->rchild;
x->rchild = NULL;
delete(x);

3.6.5 Deletion of a Node with no Child

Consider the binary search tree shown below in Figure 3.22:

Figure 3.22: A Binary Tree before Deletion of a Node Pointed to by x

Let the left child of the node pointed by y be nil, and dispose node pointed by x as shown below in
Figure 3.23.
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Nil

Nil Nil

Figure 3.23: A Binary Tree after Deletion of a Node Pointed to by x

3.6.6 Searching for a Target Key in a Binary Search Tree
boolean search{tnode *p, int val)
{

boolean ans;

tnode *temp;

temp = p;
ans = false;
while ((temp != NULL) && ('!'ans))
{
if (temp->data == val)
ans = true;
else
if (temp->data > val)
temp = temp->left;
else
temp = temp->right;
]
}

3.6.7 An Application of a Binary Search Tree
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One of the applications of a binary search tree is the implementation of a dynamic dictionary. A
dictionary is an ordered list which is required to be searched frequently, and is also required to be
updated (insertions and deletions) frequently. Hence can be very well implemented using a binary
search tree, by making the entries of dictionary into the nodes of binary search tree. A more efficient
implementation of a dynamic dictionary involves considering a key to be a sequence of characters, and
instead of searching by comparison of entire keys, we use these characters to determine a multi-way
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branch at each step, this will allow us to make a 26-way branching according the first letter, followed
by another branch according to the second letter and so on.

A program to create a binary search tree, given a list of identifiers is given below:
char key[MAXLEN] ;

struct tnode

{
key name;
tnode *1lchild;
tnode *rchild;
}

void btree()
[
tnode *root;
key item;
int n;
root = NULL;
printf (“Number of data values:”);
scanf (“*%d”, &n);

while( n > 0)

{
printf (“Enter the data value”);
scanf (“%$s”, item);
insert (root, item);
n = n-1;
}

printtree (root) ;

3.7 AVL TREES

An AVL tree is a balanced binary search tree. It takes its name from the initials of its inventors
Adelson, Velskii and Landis. An AVL tree has the following properties:

1. The sub-trees of every node differ in height by at most one level.

2. Every sub-tree is an AVL tree.
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Here, the height of the tree is h. Height of one subtree is h-1 while that of another subtree of the same
node is h-2, differing from each other by just 1. Therefore, it is an AVL tree.

Inserting a Node into AVL Tree

Inserting a node is somewhat complex and involves a number of cases. Implementations of AVL tree
insertion rely on adding an extra attribute - the balance factor - to each node. This factor indicates
whether the tree is left-heavy (the height of the left sub-tree is 1 greater than the right sub-tree),
balanced (both sub-trees are the same height) or right-heavy (the height of the right sub-tree is 1 greater
than the left sub-tree). If the balance would be destroyed by an insertion, a rotation is performed to
correct the balance.

Let us consider the following AVL tree in which a node has been inserted in the left subtree of node 1.

N

C
(
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This insertion causes its height to become 2 greater than node-2's right sub-tree. A right-rotation is
performed to correct the imbalance, as shown below:

2

\/\/O

Check Your Progress

1. What are the characteristic properties of an AVL tree?

2.  Define level of a node.

3.8 LET US SUM UP

A tree is a set of one or more nodes T such that there is a specially designated node called root, and
remaining nodes are partitioned into disjoint set of nodes.

The degree of a node of a tree is the number of sub-trees having this node as a root, or it is a
number of decedents of a node. If degree is zero then it is called terminal node or leaf node of a
tree.

Degree of a tree is defined as the maximum of degree of the nodes of the tree.

A tree non of whose nodes has more than N children is known as N-ary tree. In other words, an
N-ary tree is a tree whose degree is at the most N.

Binary tree is a special type of tree having degree 2.

A binary tree of depth k can have maximum 2k-1 number of nodes. If a binary tree has fewer than
2k-1 nodes, it is not a full binary tree.

An AVL tree is another balanced binary search tree. It takes its name from the initials of its
inventors - Adelson, Velskii and Landis.

In an AVL tree the sub-trees of every node differ in height by at most one level and every sub-tree
is an AVL tree.
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3.9 KEYWORDS

Tree: A two-dimensional data structure comprising of nodes where one node is the root and rest of the
nodes form two disjoint sets each of which is a tree.

Node: A data structure that holds information and links to other nodes.

Root node: The node in a tree which does not have a parent node.

Degree of a tree: The highest degree of a node appearing in the tree.

Level of a node: The number of nodes that must be traversed to reach the node from the root.
N-ary tree: A tree in whose degree is N.

-Binmjy tree: A tree of degree 2.

Inorder: A tree traversing method in which the tree is traversed in the order of left-tree, node and then
right-tree.

Postorder: A tree traversing method in which the tree is traversed in the order of left-tree, right-tree
and then node. :

Preorder: A tree traversing method in which the tree is traversed in the order of node, left-tree and
then right-tree.

Search tree: A tree constructed and used in searching algorithms.

AVL tree (Adelson, Velskii and Landis Tree): A balanced binary search tree in which the sub-trees of
every node differ in height by at most one level and every sub-tree is an AVL tree.

v3.10 QUESTIONS FOR DISCUSSION

1. Consider the tree given below:

() Find the degree of each mode of the tree.
(i) The degree of the tree.

(ii1) The level of each nodes of the tree.

50

A 4
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2. Give the array representation of a complete binary tree with depth k = 3, having the number of
nodesn = 7.

3. How many binary trees are possible with three nodes?

4. Construct a binary tree whose in-order and pre-order traversal is given below:
In-order: 5,1,3,11,6,8,4,2,7
Pre-order: 6,1,5,11,3,4,8,7,2

5. Perform inorder, preorder and postorder traversal in the following tree.

6. If the preorder traversal of a tree gives the following sequence of nodes, draw the tree. Also
traverse it in inorder and postoder.

ABCDEFGH

7. Show the result of deleting node (60) from the following binary search tree.
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8. Show the result of inserting node (45) into the above binary search tree.

9. Convert the following graph into a binary tree by removing necessary edges.

12. Where are AVL trees used?

Check Your Progress: Model Answers

1. An AVL tree is another balanced binary search tree. It takes its name from the initials of
its inventors - Adelson, Velskii and Landis. An AVL tree has the following properties:

1. The sub-trees of every node differ in height by at most one level.
.  Every sub-tree is an AVL tree.

2. We define the level of the node by taking the level of the root node to be 1, and
incrementing it by 1 as we move from the root towards the sub-trees i.e. the level of all the
descendents of the root nodes will be 2. The level of their descendents will be 3 and so on.

3.11 SUGGESTED READINGS

Data Structures and Efficient Algorithms; Burkhard Monien, Thomas Ottmann; Springer;
Data Structures and Algorithms; Shi-Kuo Chang; World Scientific
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4.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

® Define hashing and hashing functions

® Describe the collision handling techniques

4.1 INTRODUCTION

Hashing is a method of directly computing the index of the table by using some suitable mathematical
function called hash function. The hash function operates on the name to be stored in the symbol
table, or whose attributes are to be retrieved from the symbol table. This concept has been discussed in
this lesson in detail.

A priority queue is a collection of elements such that each element has been assigned a priority. We
have discussed priority queues and its implementation in this lesson.

4.2 HASHING

In many applications we require to use a data object called symbol table. A symbol table is nothing but
a set of pairs (name, value) where value represents collection of attributes associated with the name,
and this collection of attributes depends upon the program element identified by the name. For
example if a name x is used to identify an array in a program, then the attributes associated with x are
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the number of dimensions, lower bound and upper bound of each dimension, and the element type.
Therefore a symbol table can be thought of as a linear list of pairs (name, value), and hence we can use
a list of data object for realizing a symbol table. A symbol table is referred to or accessed frequently
either for adding the name, or for storing the attributes of the name, or for retrieving the attributes of
the name. Therefore accessing efficiency is a prime concern while designing a symbol table. Hence, the
most common way of getting a symbol table implemented is to use a hash table. Hashing is a method
of directly computing the index of the table by using some suitable mathematical function called hash
function. The hash function operates on the name to be stored in the symbol table, or whose
attributes are to be retrieved from the symbol table. If h is a hash function and x is a name, then h(x)
gives the index of the table where x along with its attributes can be stored. If x is already stored in the
table, then h(x) gives the index of the table where it is stored to retrieve the attributes of x from the
table. There are various methods of defining a hash function like a division method. In this method we
take the sum of the values of the characters, divide it by the size of the table, and take the remainder.
This gives us an integer value lying in the range of 0 to (n-1) if the size of the table is n. The other
method is a mid square method. In this method, the identifier is first squared and then the appropriate
number of bits from the middle of square is used as the hash value. Since the middle bits of the square
usually depend on all the characters in the identifier, it is expected that different identifiers will result
into different values. The number of middle bits that we select depends on the table size. Therefore if r
is the number of middle bits that we use to form hash value, then the table size will be 2. Hence when
we use this method the table size is required to be power of 2. Another method is folding in which the
identifier is partitioned into several parts, all but the last part being of the same length. These parts are
then added together to obtain the hash value.

4.2.1 Hashing Functions
Some of the methods of defining hash function are discussed below:

1. Modular arithmetic: In this method, first the key is converted to integer, then it is divided by the
size of index range, and the remainder is taken to be the hash value. The spread achieved depends
very much on the modulus. If modulus is power of small integers like 2 or 10, then many keys
tend to map into the same index, while other indices remain unused. The best choice for modulus
is often but not always is a prime number, which usually has the effect of spreading the keys quite
uniformly.

2. Truncation: This method ignores part of key, and use the remainder part directly as hash value.
(considering non-numeric fields as their numerical code) if the keys for example are eight digit
numbers and the hash table has 1000 entries, then the first, second, and fifth digit from right
might make hash value. So 62538194 maps to 394. It is a fast method, but often fails to distribute
keys evenly.

3. Folding: In this method, the identifier is partitioned into several parts all but the last part being of
the same length. These parts are then added together to obtain the hash value. For example, an
eight digit integer can be divided into groups of three, three, and two digits. The groups are the
added together, and truncated if necessary to be in the proper range of indices. Hence 62538149
maps to, 625 + 381 + 94 = 1100, truncated to 100. Since all information in the key can affect the
value of the function, folding often achieves a better spread of indices than truncation.

4 Mid square method: In this method, the identifier is squared (considering non-numeric fields as
their numerical code), and then the appropriate number of bits from the middle of the square are
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used to get the hash value. Since, the middle bits of the square usually depend on all the characters
in the identifier, it is expected that different identifiers will result in different values. The number
of middle bits that we select depends on table size. Therefore, if r is the number of middle bits
used to form hash value, then the table size will be 2", hence when we use mid square method the
table size should be a power of 2.

4.2.2 Hash Collision

To store the name or to add attributes of the name, we compute hash value of the name, and place the
name or attributes as the case may be, at that place in the table whose index is the hash value of the
name. For retrieving the attribute values of the name kept in the symbol table, we apply the hash
function to the name to obtain index of the table where we get the attributes of the name. Hence we
find that no comparisons are required to be done, Hence, the time required for the retrieval is
independent of the table size. Therefore retrieval is possible in a constant amount of time, which will
be the time taken for computing the hash function. Therefore, hash table seems to be the best for
realization, of the symbol table, but there is one problem associated with the hashing, and it is of
collisions. Hash collision occurs when the two identifiers are mapped into the same hash value. This
happens because a hash function defines a mapping from a set of valid identifiers to the set of those
integers, which are used as indices of the table. Therefore, we see that the domain of the mapping
defined by the hash function is much larger than the range of the mapping, and hence the mapping is
of many to one nature. Therefore, when we implement a hash table a suitable collision handling
mechanism is to be provided which will be activated when there is a collision.

Collision handling involve finding out an alternative location for one of the two colliding symbols.
For example, if x and y are the different identifiers and if h(x = h(y), x and y are the colliding symbols.
If x is encountered before y, then the i** entry of the table will be used for accommodating symbol x,
but later on when y comes there is a hash collision, and therefore, we have to find out an alternative
location either for x or y. This means we find out a suitable alternative location and either
accommodate y in that location, or we can move x to that location and place y in the i* location of the
table. There are various methods available to obtain an alternative location to handle the collision.
They differ from each other in the way search is made for an alternative location. The following are
the commonly used collision handling techniques:

L. Linear probing or linear open addressing: In this method, if for an identifier x, h(x) = i, and if the i*
location is already occupied then we search for a location close to the it location by doing a linear
search starting from the (i+1)* location to accommodate x. This means we start from the (i+1)®
location and do the linear search till we get an empty location, and once we get an empty location
we accommodate x there.

2. Rehashing: This is another method of collision handling. In this method, we find an alternative
empty location by modifying the hash function, and applying the modified hash function to the
colliding symbol. For example, if x is symbol and h(x) = 1, and if the i* location is already
occupied, then we modify the hash function h to h, and find out h,(x), if h (x) =}, and j* location

is empty, then we accommodate x in the j* location. Otherwise, we once again modify h, to
some, h, and repeat the process till the collision gets handled. Once, the collision gets handled we
revert back to the original hash function before considering the next symbol.

3. Separate Chaining/Overflow chaining: This is a method of implementing a hash table, in which
collisions gets handled automatically. In this method, we use two tables, a symbol table to accommo-
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date identifiers and their attributes, and a hash table which is an array of pointers pointing to symbol
table entries. Each symbol table entry is made of three fields, first for holding the identifier, second for
holing the attributes, and the third for holding the link or pointer which can be made pointing to any
symbol table entry. The insertions into the symbol table are done as follows:

If x is symbol to be inserted, then it will be added to the next available -entry of the symbol table.
The hash value of x is then computed, if h(x) = i, then the i* hash table pointer is made pointing
to the symbol table entry in which x is stored if the i* hash table pointer is not pointing to any
symbol table entry. If the i hash table pointer is already pointing to some symbol table entry,
then the link field of symbol table entry containing x is made pointing to that symbol table entry
to which it hash table pointer is pointing to, and make the i hash table pointer pointing the
symbol entry containing x. This is equivalent to building a linked list on the i index of the hash
table. The retrieval of attributes is done as follows:

If x is a symbol, then we obtain h(x), and use this value as the index of the hash table, and traverse
the list built on this index to get that entry which contains x. A typical hash table implemented
using this technique is shown below:

Let the symbols to be stored are x,, y,, Z,, X,, ¥,» Z,- The hash function that we use is:
h(symbol) = (value of first letter of the symbol) mod n,

Where.n is the size of table.

if hx) =i
hy) =
hiz) = k
then
h(x;) =1
h(y2) = j
h(zy) = k

Therefore the contents of the symbol table will be the one shown in Figure 4.1.

Name Attributes  Link
NULL |+
NULL |
NULT | e

P
o
#

e

Sad ol Nl B
.

Hash Table Symbol Table

Figure 4.1: Hash Table Implementation using Overflow Chaining for Collision Handling

Consider using division method of hashing store the following values in the hash table of size 11:
25,45,96,101,102,162,197,201



104 Advanced Data Structure M.S. University - D.D.C.E.

Use sequential method for resolving the collisions.
Since division method of hashing is to be used the hash function his:
h(key) = key mode 11, where key is the value to be stored.

We start with the value 25, and compute the hash value using 25 as key. The hash value is h(25) = 25
mod 11 = 3. Therefore store 25 at the index 3 in the table.

For 45, h(45) = 45 mod 11 = 1, hence place 45 at the index 1.
For 96, h(96) = 96 mod 11 = 8, '

. store 96 at index 8.

For 101,h(101) = 101 mod 11 = 2,

- store 101 at index 2.

For 102, h(102) = 102 mod 11 = 3, there is a collision, therefore we find a location closer to location
at index 3 which is empty to accommodate 102, we see that the location at index 4 is empty.

. store 102 at index 4.

For 162, h(162) = 162 mod 11 = 8, again there is a collision, therefore we find a location closer to
location at index 8 which is empty to accommodate 162, we see that location at index 9 is empty.

.. store 162 at index 9.
For 197, h(197) = 197 mod 11 = 10,
... store 197 at index 10.

For 201, h(20 1) = 201 mod 11 = 3, again there is a collision, therefore we find a location closer to
location at index 3, which is empty to accommodate 201, we see that location at index 5 is empty.

. store 201 at index 5.

The hash table therefore is the one shown below:

0

1 45
2 101
3 25
4 102
5 201
6

7

8 96
9 162
10 197
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4.3 PRIORITY QUEUES

A priority queue is a collection of elements such that each element has been assigned a priority and
such that the order in which elements are deleted and processed is defined by the following rules:

An element of higher priority is processed before any element of lower priority. Two elements with
the same priority are processed according to the order in which they were inserted into the queue.

We would use a singly linked list to implement the priority queue. Each node of the linked list would
have a type definition as follows.

struct gElement
{
T item;
int priority;
gElement *next;
} *Pqueue, *front, *rear;
The algorithm for the insertion would change now. Insertion would insert the new element at the
correct position according to the priority of the element. The elements of the priority queue would be
sorted in a non-descending order of the priority with the front of the queue having the element with

the highest priority. The deletion procedure need not change since the element at the front is the one
with the highest priority and that is the one that should be deleted.

void insert (Pqueue *front, Pqueue *rear, T e, int p)

/* this inserts an element having data e and priority p into the priority
queue */

/*the insertion maintains the sorted order of the priority queue */
{

Pqueue *f, *r;

Pqueue *x;

int pr;

X = new(Pgqueue) ;
X~->icem = e; x->priority = p;
if (front == NULL)
{
front = x;
x->next = NULL;
rear = X;
}

/* x is the first node being added to the priority queue*/
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elseif (front->priority < p)
{
x->next = front;
front = x;

}
/* X has the highest priority hence should be at the front*/

elseif (rear->priority > p)
{
X->next = NULL;
rear->next = Xx;
rear = X;

}

/* x has the least priority hence should be at the rear*/

else
{
/* x has to be inserted in between according to its priority*/
£ = front;
pr = f->pri; r = NULL;
while(pr > p) /* Advance through the queue till the proper
position is reached */
{
f = f->next; r = £; pr = f->priority;
}
/* £ now points to the node before which x has to be inserted and
r points to the node which should be before x*/
r->next = X; x->next = f;
}
}
Binary Heap

A binary tree that has the following properties (called heap properties) is called a heap tree or binary
heap.

1. Either it is empty
Or

2. The key in the root is larger than that in either child
And

3. Both subtrees have the heap properties.



M.S. University - D.D.C.E. Hashing and Priority Queues 107

Thus, a heap tree or binary heap can be used as a priority queue where the highest priority item is at
the root and is trivially extracted. But if the root is deleted, we are left with two sub-trees and we must
efficiently re-create a single tree with the heap property. Insertion and deletion in a heap tree is very
efficient - of the order of O(log n) - as compared to other trees.

Adding a Node to Heap

Inserting a node into a heap-tree is relatively straightforward. Because we keep of the largest position n
which has been filled so far, we can insert the new element at position n+ 1 provided there is still room
in the array. This will once again give us a complete binary tree, but the heap-tree property might, of
course, be violated now. Hence we may have to ‘bubble up' the new element. This is done by
comparing its priority with that of its parent, and if the new element has higher priority larger, then it
is exchanged with its parent. We may have to repeat this process, but once we reach a parent that has
bigger or equal priority, we can stop. Inserting a node takes at most log(n) steps because the number of
times that we may have to ‘bubble up' the new element depends on the height of the tree. An
algorithm for inserting a new node is listed below:

insert (node v)

{

if (n < MAX)

{

n=n+1;

heap[nl = v;

bubble_up(n);

}

else

report error: out of space;

}

bubble_up(int i)

{

while (not isroot(i) and heapl[i] > heap[parent(i)])
{.

swap heap[i] and heapl(parent(i)];

i = parent{i);

}

}

Boolean isroot(int t)

{ .
if (£ == 1)
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return TRUE;
else
retufn FALSE;
}

Consider the following heap tree.

Let us insert a node with data value 49. Since the next position is the left child of the node with value 43,

the new node will be added as shown below:
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However, this makes the tree violate the heap property. Therefore, 43 must be swapped with 49.

Even now the heap property is not being fulfilled. Therefore, 45 must be swapped with 49. At this
point the tree possesses the heap property and thus, we stop.

Deleting a Node from Heap

In a heap-tree, only the node with the highest priority (the one at the root) is deleted. We're then left
with something which isn't a binary tree at all. We can now 'trickle down' the new root by comparing
it to both its children and exchanging it for the largest. This process is then repeated until this element
has found its place. ‘

Again, this takes at most log(n) steps. Note that this algorithm does not try to be fair in the sense that
if two nodes have the same priority, it is not necessary that the one that has been waiting longer is
removed first. A solution to this is to keep some kind of time-stamp on arrivals, or by giving them
numbers.
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Consider the following heap tree, for illustrating deletion operation.

(D
()
()
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Deleting a node will remove 50 from the root of the heap tree. The empty root must then be filled
with the last element of the heap tree (i.c., 43).

/
7
a 6 ’ ;

However, in doing so, the heap looses its heap property and therefore, it must be rearranged. 43 must
be swapped with 49.

& N
~
~
~
N
~
~
N
~
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Even this does not confirm with the definition of heap. One more swap is necessary - 43 with 45 -

resulting in the final heap tree.

Check Your Progress

1. Define rehashing.

2. What is mid-square method?

4.4 LET US SUM UP

e Hashing is a method of directly computing the index of the table by using some suitable
mathematical function called hash function.

® A priority queue is a collection of elements such that each element has been assigned a priority.

e An element of higher priority is processed before any element of lower priority. Two elements
with the same priority are processed according to the order in which they were inserted into the
queue.

4.5 KEYWORDS

Hashing: Hashing is a method of directly computing the index of the table by using some suitable
mathematical function called hash function.

Separate Chaining: This is a method of implementing a hash table, in which collisions gets handled
automatically.

Priority Queue: A queue in which elements are assigned priorities to determine the order in which they
can be retrieved.

4.6 QUESTIONS FOR DISCUSSION

1. Use division method of hashing to store the following values in the hash table of size 12.

125, 145, 196, 201, 202, 145, 107, 201
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Use sequential method for resolving the collisions.
2. How is a heap tree different from a binary tree?

3. Show the step-wise results of inserting a node (36) into the following heap tree.

0
o o
ONONNONO

OO OO0 OO

4. Give an example of a priority queue from everyday life.

Check Your Progress: Model Answers

1. Rehashing is a method of collision handling, In this method we find an alternative empty
location by modifying the hash function, and applying the modified hash function to the
colliding symbol.

2. In Mid square method this method the identifier is squared (considering non-numeric
fields as their numerical code), and then the appropriate number of bits from the middle
of the square are used to get the hash value.

4.7 SUGGESTED READINGS

Dara Structures and Efficient Algorithms; Burkhard Monien, Thomas Ottmann; Springer;
Data Structures and Algorithms; Shi-Kuo Chang; World Scientific

How to Solve it by Computer; RG Dromey; Cambridge University Press

Classic Data Structures in C+ +; Timothy A. Budd; Addison Wesley
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5.0 AIMS AND OBJECTIVES

After studying this lesson, you will be able to:

® Discuss the concept of sorting

® Discuss insertion sort, shell sort, heap sort, merge sort, and quick sort

5.1 INTRODUCTION: SORTING PRELIMINARIES

Sorting refers to the operation of arranging data in some given order, such as increasing or decreasing,
with numerical data or alphabetically, with character data.

Let P be a list of n elements P, P,, P....P, in memory. Sorting P refers to the operation of rearranging
the contents of P so that they are increasing in order (numerically or lexicographically), that is,

P,<P,<P..<P,
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Since P has n elements, there are n! ways that the contents can appear in P. These ways correspond

) y pPp y P .
precisely to the n! permutations of 1, 2, ...n. Accordingly, each sorting algorithm must take care of
these n! possibilities.

Classtfication of Sorting

Sorting can be classified in two types:

(1) Internal Sorting

(i) External Sorting _

®  Internal Sorting: If the records that have to be sorted are in the internal memory.
®  External Sorting: If the records that have to be sorted are in secondary memory.
Efficiency Considerations

The most important considerations are:

1. The amount of machine time necessary for running the program.

2. The amount of space necessary for the program.

In most of the computer applications one is optimized at the expense of another. The actual time units
to sort a file of size n varies from machine to machine, from one program to another, and from one set
of data to another.

So, we find. out the corresponding change in the amount of time required to sort a file induced by a
change in the file size n. The time efficiency is not measured by the number of time units required but
rather by the number of critical operations performed.

Critical operations are those that take most of the execution time. For example, key comparisons (that
is, the comparisons of the key of two records in the file to determine which is greater), movement of
records or pointer to record, or interchange of two records.

5.2'0' NOTATION

Given two functions f(n) and g(n), we say that {(n) is of the order of g(n) or that {(n) is O(g(n)) if there
exists positive integers a and b such that

f(n)<a*g(n)fornzb.

For example, if {(n) = n? + 100n and g (n) = n?

f(n) is O(g(n)), since n* + 100n is less than or equal to 2n? for all n greater than or equal to 100. In this
casea = 2and b = 100.

The same f(n) 1s also O(n’), since n? + 100 n is less than or equal to 2n® for all n greater than or equal to
8. If {(n) is O(g(n)) and g(n) is O(h(n)), then f(n) is O(h(n)). For example, n* + 100n is O(n?) and n? is
O(w’), then n* +100n is O(n’) for (a = 1, b =1). This is called the transitive property.

If the function is C * n then its order will be O(n*) for any constant ¢ and k. As ¢ * n is less than or

equal toc * n*forany n3 1 (l.ea = ¢, b = 1). If f(n) is n* then its order will be O(n*+) for any j 3 O(for
a=1,b=1).
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If f(n) and g(n) are both O(h (n)), the new function f(n) + g(n) is also O(h(n)). If {(n) is any polynomial
whose leading power is k[ i.e. f(n) = ¢, * n* +¢* n* + . + ¢, *n+c, ]
f(n) is O(n¥).
Algorithm Efficiency in Logarithmic Function
Let log_n and log,n be two functions. Let xm be log n and xk be log,n then

m™=nandk* =n

Sinceif m* = n

So thatlog n = x

So that m=™ = k=

Taking log_ of both sides.

xm = log_ (k)

Now it can easily be shown that log, (x) equals y *log, x for any x, y and z, so that the last equation
can be written as

log n = xk * log k [since xm = log n]
or as
log_n = (log k) * log,n [since xk = log,n]
Thus log_ n and log, n are constant multiples of each other.
If f(n) = c * g(n) then f(n) is O(g(n)) thus log_n is O(log,n) and log,n is O(log,n) for any m and k.
The following facts establish an order hierarchy of functions:
e Cis O(1) for any constant C.
e Cis O(log n), but log n is not O(1).
e C *logn is Olog n) for any constant C, K.
C * log,n is O(n), but n is not O(log n).
C * n* is O(n*) for any constant C, K.
e C *n*is O(n*), but n**iis not O(n¥).
C * n * log, n is O(n log n) for any constant C, K.
C * n* log, n is O(n?), but n? is not O(n log n).
e C*ni*log nis O(nilog n) for any constant c, j, k.
e C*n* (logn is O(n*!), but ni*! is not O(n log n).
o C*n*(logn)lis O(w (log n)) for any constant ¢, j, k, 1.
e C*ni* (logn)lis O(n*') but n*! is not O(n' (log n)").
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5.3 INSERTION SORT

An insertion sort is one that sorts a set of records by inserting records into an existing sorted file.
Suppose an array A with n elements A[1], A[2],.......A[N] is in memory. The insertion sort algorithm
scans A from A[1] to A[N], inserting each element A[K] into its proper position in the previously
sorted sub array A[1], A[2],... A[K-1].

. Example: Sort the following list using the insertion sort method: 4,1,3,2,5

B i 4 } ] ! ] Placed in iposition
i

i} E i il ! l 1 I =4, therefore insen priorto 4

[% l 3 [ —?g 1 ' 3>, insert between 1 & 4

(,
—
(23
s
1ad
'
rs
%
£
147
a
7
(8]
13
[
Lt

Vi L 1 2 l i -‘-J 5; IxLonsentatter 4

Thus, to find the correct position, search the list till an item just greater than the target is found; shift
all the items from this point one down the list, insert the target in the vacated slot.

Algorithm to Implement Insertion Sort
insert sort (x, n)

int x[ ], n;

{
int i, k, vy;
for (k = 1; k < n; k++)
{
Yy = x [k];
for (i = k-1; 1 > = 0 && y < x [i]; 1 --)
X [1i+1] = x[i];
X [i+1] = vy;
}
}

Analysis of Insertion Sort
If the initial file is sorted, only one comparison is made on each pass, so that sort is Of(n). If the file is
initially sorted in reverse order, the sort is O(N?), since the total number of comparisons are:
M-)+0-2)+..+3+2+1= (N-1)*N/2
which is O(N?).
The closer the file is to sorted order, the more efficient the simple insertion sort becomes. The space

requirements for the sort consists of only one temporary variable, Y. The speed of the sort can be
improved somewhat by using a binary search to find the proper position for x[k] in the sorted file.
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x[0], x[1] ... x[k - 1]
This reduces the total number of comparisons from O(N?) to Of(n log, (n)). However even if the
correct position i for x[k] is found in O(log, (n)) steps, each of the elements x[i+1] ... x[k - 1] must be
moved by one position. This latter operation to be performed N times requires O(N? replacement.

5.4 SHELL SORT

More significant improvement on simple insertion sort than binary or list insertion can be achieved
using the Shell Sort (Diminishing Increment Sort). This method sorts separate subfiles of the original file.

These subfiles contain every kth element of the original file. The value of k is called an increment. For
example, if k is 5, the subfile consisting of x[0], x[5], x[10],... is first sorted. Five subfiles, each
containing one fifth of the element of the original file are sorted in this manner. These are:

Subfile 1: x[0] x[5] x[10] ....
Subfile 2: x[1] x[6] x[11] ...
Subfile 3: x[2] x[7] x[12] ....
Subfile 4 x[3] x[8] x[13] ...
Subfile 5: x[4] x[9] x[14] ...

The i* element of the j* subfile is x[(i - 1)* 5+j - 1]. If a different increment is chosen, the k subfiles
are divided so that the i* element of the j* subfile is x[(i - 1) * k+j - 1].

After the k subfiles are sorted (usually by simple insertion), a new smaller value of k is chosen and the
file is again partitioned into a new set of subfiles. Each of these larger subfiles are sorted and the
process is repeated yet again with an even smaller value of k.

Eventually, the value of k is set to 1, so that the subfile consisting of the entire file is sorted.

A decreasing sequence of increments is fixed at the start of the entire process. The last value in this
sequence must be 1.

For example, if the original file is:
25 27 48 37 12 92 86 33

and the sequence (5, 3, 1) is chosen, the following subfiles are sorted on each iteration:

First iteration (increment = 5)
(x[0], x[5])
(x[1], x[6]
(x[2], x[7]
(x[3]]
(x[4)
Second iteration (increment = 3)
(x[0], x[3], x[6))
(x[1], x[4], x[7])

(x(2], x(5])
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Third iteration (increment = 1)

(x[0], x[1], x[2], x[3], x[4], x[5], x[6], (7))
Example: The following figure illustrates the shell sort on this sample file:

Origingl file: {23 37 & 37 12 % * 33
Pass | 23 57 - 37 12 2 % 33
. L |

L |
Pass 2 23 57 3 37 2 2 % 8
. L |
span > E 1 ;
Pass 3 pa] 12 K] 37 48 w % 7
gy LI I
Sorted file 12 25 B 37 48 37 % 43

Algorithm to Implement Shell Sort

void shellsort (int x{ ], int n, int increments [ ], int numeric)
t
int incr, j, k, span, vy:
for (incr = 0; incr <numeric: incr ++)
{
span = increments [incr];
for (j = span; j <n; j++)
/* insert element x[j] into
/* its proper position with its */
/* subfile * /
y = x[31;
for (x = j-span; k > = 0 && Yy < x [k]; k-=span)
x[k+span] = x[k];
x[k+spanl=y;
} /* end for */
} /* end for * /
} /* end shell sort */

Analysis of Shell Sort

Since the first increment used by the shell sort is large, the individual subfiles are quite small, so that the
simple insertion sort on those subfiles are fairly fast. Each sort of a subfile causes the entire file to be
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more nearly sorted. Thus, although successive passes of the shell sort use smaller increments and
therefore, deal with larger subfiles, those subfiles are almost sorted due to the actions of previous passes.

Thus the insertion sort on these subfiles are also quite efficient. The actual time requirement for a
specific sort depends on the number of elements in the array increments and on their actual values.

It has been shown that order of the shell sort can be approximated by O(n * (log (n?)) if an appropriate
sequence of increments is used. For other series, the running time O(n!*).

5.5 HEAP SORT

The algorithm which we now formulate is a combination of algorithms by Floyd and Williams. In
general a heap which represents a table of n records satisfies the property

K. < K; for 2< j<n and i=[j/2]. The binary tree is allocated sequentially such that the indices of the
left and right sons (if they exist) of record 1 are 2i and 2i+1 respectively.

A complete binary tree is said to satisfy the "Heap Condition" if the key of each node is greater
than or equal to the keys in its children. Thus, the root node will have the largest key value. Trees
can be represented as arrays, by first numbering the nodes (starting from the root) from left to
right. :

The key value of nodes are then assigned to array positions whose index is given by the number of the
node.

The relationships of the node can also be determined from the array representation. If a node is at
position j, its children will be at positions 2j and 2j+ 1. Its parent will be at position j/2. A heap is a
complete binary tree in which each node satisfies the heap condition, represented as an array. The
operation on a heap works in two steps:

() The required node is inserted/deleted/or replaced.

(i) First step may cause violation of the heap condition so the heap is traversed and modified to
rectify any such violations.
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5.5.1 Insertion in Heap

Consider an insertion of node R in the heap 1.

1
2
3
4.
5
6

Initially R is added as the right child of ] and given the number 13.
But R J, the heap condition is violated.

Move R upto position 6 and move ] to position 13.

R P, therefore, the heap condition is still violated.

Swap R and P.

The heap condition is now satisfied by all nodes.

Figure 5.3: Heap 3

A general algorithm for creating a heap is given below:

1.
2
3.
4
5.

6.
7.

Repeat through step 7 while there still is another record to be placed in the heap.
Obtain child to be placed at leaf level.
Obtain child to be parent for this child.

Repeat through step 6 while the child has a parent & the key of the child is greater than that of its
parent.

Move parent down to position of child.
Obtain position of new parent for the child.

Copy child record into its proper place.

More formal procedure Create_Heap (K,N) is given below. K is a given table containing the keys of
the N records of a table, this algorithm creates a heap as previously described. The index variable Q
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controls the number of insertions which are to be performed. The integer variable J denotes the index
of the parent of key k[I]. Key contains the key of the record being inserted into an existing heap.

1. [Build Heap]
Repeat through step 7 for Q =2,3....N
2. [Initialize construction phase]
IfQ
KEY{K[Q]
3. [Obtain parent of new record]
JfTrunc (I/2)
4. [Place new record in existing heap]
Repeat through step 6 while I>1 and KEY > K[J]
5. [Interchange record]
K[1]14K]]
6. [Obtain next parent]
Ii]
JfTrunc (1/2)
if] <1
then Jf1
7. [Copy new record into its proper place]
K [1] fKEY
8. [Finished]

Return

5.5.2 Deletion from Heap

When we delete any node from the tree, the child with greater value will be promoted to replace that node.
Consider deletion of M from heap 2.

The larger of M's children are promoted to 5.

An efficient sorting method is based on the heap construction and node removal from the heap in
order. This algorithm is guaranteed to sort N elements in N log N steps.

5.6 CONSTRUCTION OF HEAP

Two methods of heap construction and then removal in order from the heap to sort the list are as
follows: ’

Top-down Heap Construction

® Insert items into an initially empty heap, keeping the heap condition intact in all steps.
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Bottom-up Heap Construction
® Build a heap with the items in order presented.
® From the right most node modify to satisfy the heap condition.

For example, to build a heap of the following using both methods of construction.

Let the input string be "PROFESSIONAL".

5.6.1 Top-down Construction

. @9 @”R oeo

Figure 5.4
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5.6.2 Bottom-up Construction

Figure 5.5

5.7 SORTING USING HEAP

The sorted elements will be placed in x[ ] an array of size 12.

888
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(1) Remove 'S' and store in x[12].

12 3 4 3 6 7 B 91011 12

=L L LT T T T T T TT5T5]

2 10 1 12

-[TIT T I T T LT
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iv) Remove 'P; and store in x [9].

1T 2 3 4 3 6 7 8B 9 W11 o112

wi=l L LT T T T JelR]sTs]

(v) Remove 'O’ and store in x[8].

12 3 45 6 7 8 91011 12
= L L L 1] Jofp[r]sTs]

(vi) Remove 'O' and store in x[7].

1.2 03 4 5 & 7 8 9 101112

= LI LT T T Jolol p[rIsTs]

Sorting 127
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(vi1) Remove 'N' and store in x[6].

T2 3 4 5 & F OB 9 1011 12

=L 1 1 | InNfoloTeTr]sTs]

(viit)Remove 'L’ and store in x[5].

(L)
(OO
(&

12 3 4 3 6 7 B 81011 12
il [ T JefvJofolrr]s]s]

(x) Similarly, the remaining 3 nodes are removed and the heap modified to get the sorted list
AEFILNOOPRSS.

5.8 MERGE SORT

The operation of sorting is closely related to the process of merging. This sorting method uses merging
of two ordered lists which can be combined to produce a single sorted list. This process can be
accomplished easily by successively selecting the record with the smallest key occurring in either of the
lists and placing this record in a new table, thereby creating an ordered list.

Merge sort is one of the divide and conquer class of algorithm. The basic idea is to:
® Divide the list into a number of sublists.

® Sort each of these sublists.

® Merge them to get a single sorted list.

Two-way merge sort divides the list into two, sorts the sublist and then merges them to get the sorted
list, also called concatenate sort.

Multiple merging can also be accomplished by performing a simple merge repeatedly. For example, if
we have 16 lists to merge, we can first merge them in pairs. The result of this first step yields eight
tables which are again merged in pairs to give four tables. This process is repeated until a single table is
obtained. In this example, four separate passes are required to yield a single list. In general, k separate
passes are required to merge 2k separate lists into a single list.
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Example
(7] 14 {/ 13 </ 12} 18] (5
4 \\\//f 7 N 3 o 2] \\Xg// 4)
Il 3 4 7 0 2 5 131
o I 2 3004 5 8 7)

Algorithm for Merging Two Sorted Files to Get Third Sorted File

Let (X, .., X )and (X__,, ..., X ) be two sorted files. Let the merged file is (Z,, ..., Z ).

Procedure:
merge (x, z, 1, m, n)

int x[ 1, z{ 1, 1, m, n;

/* (x[1], ..., x[m]) and (x[m+1]1, ..., x[nl)
keys, such that x[1] £ ... f x[m] * /

int i, 4, k, t;

i=1;

k =1; /*1i, j & k are positions in these fileg * /

j = m+l;

while (( 1 £m) & & (§ < = n))

{
if (x[i) < = x[3])
{
z[k]l = x[1];
1 ++;
}
else
{
z{k]l = x [j1;
J++;
}
k = k+1;
}

If (i > m)

Sorting 129

are two sorted lists with
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{
for (t = Jj; t < n; t++)
z[k + £t - 31 = x[t];
}
else
{
for (t = 1; t < m; t++)
zik + t - 1] = x[t]
}
}

The above algorithm for merge sort has one important property that after pass K, the array A will be
positioned into sorted subarrays of exactly L = 2% elements (except the last subarray).

By dividing n (size of array A) by 2¥L, we get the quotient Q which is number of pairs of sorted
subarrays, of size L, 1.e.

Q = INT (N/2%L)
$=2*L*Q will be the total number of elements in the Q pairs of subarrays. R=N - S denotes the
number of remaining elements.

Analysis of Algorithm "MERGE'

The while loop is iterated at most n — 1 + 1 times. The if statement moves at most one record per
iteration (considering sorting of records), the total time is therefore O(n - 1 + 1). If records are of
length m then this time is O{m(n -1 + 1)).

Analysis of 'MSORT'

On the ith pass the files being merged are of size 2. Consequently, a total of [log, (N)] passes are made

over the data. Since two files can be merged in linear time (algorithm 'MERGE'), each pass of merge
sort takes O(N) time. As there are [log, (N)] passes, the total computing time is O(N * log, N).

5.9 QUICK SORT

Quick sort is also known as partition exchange sort. An element (a) is chosen from a specific position
within the array such that x is partitioned and a is placed at position j and the following conditions hold:

1. Each of the elements in position O through j-1 is less than or equal to a.
2. Each of the elements in position j+1 through n-1 is greater than or equal to a.

The purpose of the Quick Sort is to move a data item in the correct direction just enough for it to
reach its final place in the array. The method, therefore reduces unnecessary swaps, and moves an item
a great distance in one move. A pivotal item near the middle of the array is chosen, and then items on
either side are moved so that the data items on one side of the pivot are smaller than the pivot, whereas
those on the other side are larger, the middle (pivot) item is in its correct position. The procedure is
then applied recursively to the parts of the array, on either side of the pivot, until the whole array is
sorted.
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Example:

If an initial array is given as: ;
25 57 48 37 12 92 86 33

and the first element (25) is placed in its proper position, the resulting array is:
12 25 57 48 37 92 86 33

At this point, 25 is in its proper position in the array (x[1]), each element below that position (12) is
less than or equal to 25, and each element above that position (57, 40, 37, 92 86 and 33) is greater than
or equal to 25.

Since 25 is in its final position the original problem has been decomposed into the problem of sorting
the two subarrays.

(12) and (57 48 37 92 86 33)

First of these subarrays has one element so there is no need to sort it. Repeating the process on the
subarray x[2] through x[7] yields:

12 25 (48 37 33 57 (92 86)

and further repetitions yield

1225 (37 33) 48 57 (92 86
12 25 (33 37 48 57 (92 86
1225 33 37 48 57 (92 86
1225 33 37 48 57 (8¢) 92

12 25 33 37 48 57 86 92
Algorithm to Implement Quick Sort

gsort (int x[ 1, int m, int n)

/* m and n contains upper and lower bounds of array * /
/* array has to be sorted in non-decreasing order */
int i, j, k, t;

if (m < n)

{
i=m;
j = n+l;
k = x [m]; /* key */
while(1)
{

do

i = 1i+1;
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}
while (x [i] < k);
do
{
j=3-1;
}
while (x [j] > k);
if (1 < 3)
{
t = x [1];
x [i)] = x []];
x [J] = t;
}
else break;
}
¥
= x [m];
m] = x [J];
= t;

t

X

x [3]
q sort (x, m, j -1);
a

sort (x, j+1; +n);

}

We shall illustrate the mechanics of this method by applying it to an array of numbers. Suppose, the
array A initially appears as:

(15, 20, 5, 8, 95, 12, 80, 17, 9, 55)
Figure 5.6 shows a quick sort applied to this array.
Al) A@Q A3 AM@ A(B) A A7) A® A(G A(10)

15 20 5 8 95 12 80 17 9 55
9 20 5 8 9% 12 8 17 () 55
9 O 5 8 9 12 8 17 20 = 55
9 12 5 8 9 () 8 17 20 55
9 12 5 8 () 9 8 17 20 55
9 12 5 8 15 9 80 17 20 55

Figure 5.6: Quick Sort of an Array
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The following steps are involved:

Remove the Ist data item, 15, mark its position and scan the array from right to left, comparing
data item values with 15. When you find the Ist smaller value, remove it from its current position

1.

and put in position A(1). This is shown in line 2 of Figure 5.7.

Sorting 133

Scan line 2 from left to right beginning with position A(2), comparing data item values with 15.
When you find the Ist value greater than 15, extract it and store in the position marked by

parentheses in line 2. This is shown in line 3 in the Figure 5.7.

Begin the right to left scan of line 3 with position A(8) looking for a value smaller than 15. When
you find it, extract it and store it in the position marked by the parentheses in line 3 of Figure 5.7.
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4. Begin scanning line 4 from left to right at position A(3), find a value greater than 15, remove it,
mark its position, and store it inside the parentheses in line 4. This is shown in line 5 of Figure 5.7.

5. Now, when you scan line 5 from right to left beginning at position A(7), you find no value
smaller than 15. Moreover, you come to a parentheses position, position A(5). This is the location
to put the Ist data item, 15, as shown in line 6 of Figure 5.7. At this stage 15 is in its correct place
relative to final sorted array. '

Analysis of Quick Sort
Assumption:  File is of size n where n is a power of 2.

Say n = 2= so that m = log,n.

Average Case Behaviour

Proper position for the pivot always turns out to be exact middle of the subarray. There will be
approximately n comparisons on the first pass after which file will split into two subfiles each of size
n/2 approximately.

For each of these two files there will be approximately n/2 comparisons. So, after halving the subfiles
m times, there are n files of size 1. Thus, the total number of comparisons fcr the entire sort is
approximately:

n+2*(n/2) + 4% (n/4) + 8 * (n/8) + .. + n* (n/n)
or
n+n+n+n+.n(mterms)
There are m terms because the file is divided m times. Thus, the total number of comparisons are:
On * m) or O(n log n) [as m = log,n]
Worst Case Behaviour

The worst case occurs when the first pivot fails to split the list. This happens when the original file is
already sorted. If, for example, x[b] is in its correct position, the original file is split into subfiles of
sizesOandn - 1.

If this process continues, a total of n - 1 subfiles are sorted, the first of size n; the second of size (n - 1)
and so on. Total number of comparisons to sort the entire filearen + (n - 1) + (n -2) + .. + (2)

which is O(n?)

Thus, the quick sort works best with completely unsorted files and worst for files that are completely
sorted.

Check Your Progress

1.  Define sorting. Name its various categories.
2. Fill in the blanks:
(2 Ina heap, the ———— node has the largest key value.

(b) In merge sort, total passes are ——— and the total computing times is ————— .
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5.10 LET US SUM UP

e Sorting is an important operations associated with any data structure.

e Efficient and reliable data processing depends upon sorted data.
® The internal and external sorting methods have their relative efficiencies in different applications.

® In quick sort an element x is chosen from a specific position within the array such that each
element in position O through that element is less than or equal to x and each of the elements in
position greater than the position of x is greater than or equal to x.

® With a large size n and long keys, heap sort and merge sort can be used. With a large size n and
short keys radix sort can be used.

® Heap is a binary tree with a condition that every node has a larger key value than its left and right

child.

® While representing such a tree in array, if a node is placed at ith index then its left child will be at
2i and right child will be at 2i+ 1. Hence, any nodes parent will be at i/2.

® In merge sort we split the array into subarrays of some size and then sort each of them separately
and then merge two sorted subarrays to get sorted list with each pass size of subarrays doubled.

5.11 KEYWORDS

Sorting: The operation of arranging data in some given order, such as increasing or decreasing with
numerical data or alphabetically, with character data.

Quick Sort: A divide and conquer algorithm which works by creating two problems of half size,
solving them recursively, then combining the solutions to the small problems to get a solution to the
original problem.

Insertion Sort: A sorting technique that sorts a set of records by inserting records into an existing
sorted file.

Merge Sort: Sorting method that uses merging of two ordered lists which can be combined to produce a
single sorted list.

5.12 QUESTIONS FOR DISCUSSION

1.  Why is there a need for sorting?

2. Werite a short note on ‘O’ notation.
3. Sort the following list using the insertion sort method:
6 2 8 3 1 9
4. Sort the following list using the shell sort method:
36 28 39 42 19 10 9 54
5. What is a heap? Construct a heap with the following data:
1,2,3,4,5,6,7,8,9, 10, 11
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Y o N o

11.

12.
13.

14.
15.

Explain sorting method through heap.

Write a 'C' code for construction of a heap.

Write a 'C' program for heap sort,

What is insertion sort? Explain with suitable example. Also explain its time complexity.

Write a 'C' function for insertion sort. For searching the smallest element in array use binary
search. Explain your program's time complexity.

What is merging? Write a 'C' program to merge two sorted lists to get another sorted list. Explain
its time complexity.

What is merge sort? Explain the method with a suitable example.

Write a 'C' program for merge sort, which uses the function Merge() to merge two sorted lists to
get the third sorted list. Explain its time complexity.

Explain Quick Sort. Write a 'C' program for quick sort. Explain its time complexity.

Show that algorithm for quick sort takes O(n?) time when the input file is already in sorted order.

Check Your Progress: Model Answer

1. Sorting refers to the operation of arranging data in some given order, such as increasing of
decreasing, with numerical data or alphabetically, with character data.

2. Sorting can be classified in two types:
() Internal Sorting
(i) External Sorting
3. (a) root

(b) [log,(N)], O(N*log,N)

5.13 SUGGESTED READING

Shi-kuo Chang, Data Structures and Algorithms, World Scientific.
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6.0 AIMS AND OBJECTIVES

After studying this lesson, you should be able to:
e Discuss graph definitions '

® Define topological sort

e Discuss shortest path algorithms

e Discuss minimum spanning tree
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6.1 INTRODUCTION

Graphs are natural models used to represent arbitrary relationship among data objects. We often need
to represent such arbitrary relationship among the data objects while dealing with many problems in
computer science, engineering, and many other disciplines. Therefore the study of graphs as one of the
basic data structures is important.

This section presents the definition of a graph (both directed as well as undirected) and related terms.
We will discuss various shortest path algorithms and minimum spanning tree.

6.2 DEFINITIONS

A graph is a structure made of two components, a set of vertices V, and the set of edges E. Therefore a
graph is G=(V, E), where G is a graph. The graph may be directed or undirected. When the graph is
directed every edge of a graph is an ordered pair of vertices connected by the edge, whereas when the
graph is undirected every edge of a graph is an unordered pair of vertices connected by the edge. Given
below in Figure 6.1 are the structures which are graphs.

(1

®
©

Undirected Graph G, Directed Graph G,

Figure 6.1

Incident edge: It (V,,V) is an edge, then edge (V. ,V) is said to be incident on vertices v, and v.. For
example, in the graph G, shown above in Figure 6.1 the edges incident on vertex 1 are (1,2), (1,4), and
(1,3), whereas in G, the edges incident on vertex 1 are (1,2).

Degree of vertex: It is the number of edges incident on the vertex. For example, in graph G, shown
above the degfee of vertex 1 is 3, because 3 edges are incident on it. For a directed graph, we need to
define indegree and outdegree.

Indegree of a vertex v, is the number of edges incident on v, with v, as the head. Outdegree of vertex v,
is the number of edges incident on v, with v, as the tail. For a graph G, shown the indegree of the
vertex 2 is 1, whereas the outdegree of the vertex 2 is 2.

Directed edge: A directed edge between the vertices v, and v, is an ordered pair, and denoted as <v,
v,>.

Undirected edge: An undirected edge between the vertices v. and v, is an unordered pair, and denoted as

(v, v).
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Path: A path between the vertices v, and v, is a sequence of vertices v ,v,,,,,...,v;,,v, such that there
exists a sequence of edges (v,, v,), (v, V) 5 .. , (v,,,v,). In the case of a directed graph, a path between
the vertices v, and v, is a sequence of vertices Vo Vi Visees VsV such that there exists a sequence of edges
<V, vy >y <V V> e, <V > If there exists a path from vertex v,to v, inan undirected graph,
then there always exists a path from v_ to v, also. But in the case of a directed graph, if there exists a
path from vertex v, to v,, then it does not necessarily imply that there exists a path from v, to v, also.

Simple path: A simple path is a path given by a sequence of vertices in which except the first and the
last vertex all vertices are distinct. If the first and the last vertex is the same then the path will be a
cycle.

Maximum number of edges: The maximum number of edges in an undirected graph with n vertices is
n(n - 1)/2 whereas in case of a directed graph it is n(n - 1).

Subgraph
A subgraph of a graph G=(V,E) is a graph G where
1. V(GJ) is a subset of V(G).

2. E(G)) consists of edges (v,,v,) in E(G) such that both v, and v, are in V(G). (Note: if G = (V, E) is
a graph, then V(G) is set of vertices of G and E(G) is a set of edges of G.) )

If E (G) consists of all edges (v,,v,) in E(G), such that both v, and v, are in V(G!), then G! is called an
induced subgraph of G.

For example, the graph shown in Figure 6.2 is a subgraph of the graph G, shown in Figure 6.1.

®

Figure 6.2: Subgraph
For the graph shown below in Figure 6.3, one of the induced subgraphs is shown in Figure 6.4.

O—L
K¢

Figure 6.3: Graph G
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Figure 6.4: Induced Subgraph of Graph G of Figure 6.3

In an undirected graph G, the two vertices v, and v, are said to be connected, if there exist a pathin G
from v, to v,.(being undirected graph there exists a path from v2 to v1 also).

Connected graph: A graph G is said to be connected if for every pair of distinct vertices (v,;v) there is
path from v, to v.. Given below in Figure 6.5 is a graph which is connected.

Figure 6.5: Connected Graph

Completely connected graph: A graph G is completely connected if for every pair of distinct vertices
(v,,v) there exists an edge. Given below in Figure 6.6 is a graph which is completely connected.

Figure 6.6

6.3 TOPOLOGICAL SORT

An application: You have a lay down of responsibilities. You are also told a set of preference relations;
some tasks cannot be performed previous to others. How shall you plan the jobs exclusive of violating
any prec restraint?

Job -> nodes; preference relations - > edges.

Evidently, if there is a cycle in the graph, no practicable plan.
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When there is no cycle, *topological sorting® is a categorizing of vertices such that if there is a path
from v, to v;, then v, occurs prior to v in the plan.

Algorithm:
Find a vertex v with zero in-degree ~ (must exist!)
Print v, delete v, and its outgoing edges;
Repeat;

Take O(V*2) time.

6.4 DIJKSTRA SHORTEST PATH ALGORITHM

E. W. Dijkstra developed an algorithm to determine the shorted path between two nodes in a graph. It
is also possible to find the shortest paths from a given source node to all nodes in a graph at the same
time, hence this problem is sometimes called the single-source shortest paths problem.

The shortest path problem may be expressed as follows:

Given a connected graph G = (V, E), with weighted edges and a fixed vertex s in V, to find a shortest
path from s to each vertex v in V. The weights assigned to the edges may represent distance, cost,
effort or any other attribute that needs to be minimized in the graph.

A solution to this problem could be found by finding a spanning tree of the graph. The graph
representing all the paths from one vertex to all the others must be a spanning tree - it must include all
vertices. There will also be no cycles as a cycle would define more than one path from the selected

vertex to at least one other vertex.

The algorithm finds the routes, by cost precedence. Let's assume that every cost is a positive number.
The algorithm is equally applicable to a graph, a digraph, or even to a mixed graph with only some of
its sides directed. If we consider a digraph, then every other case is fully covered as well since a no
directed side can be considered a 2 directed sides of equal cost for every direction.

The algorithm is based on the fact that every minimal path containing more than one side is the
expansion of another minimal path containing a side less. This happens because all costs are considered
as positive numbers. In this way, the first route D(1) found by the algorithm will be one arc route, that
is from the starting point to one of the sides directly connected to this starting point. The next route
D(2) will be a one arc route itself, or a two arc route, but in this case-will be an expansion of D(1).

Here is the algorithm.

1. Let V be the set of all the vertices of the graph and S be the set of all the vertices considered for
the determination of the minimal path.

2. SetS ={}.
3.  While there are still vertices in V - S.

i.  Sort the vertices in V - S according to the current best estimate of their distance from the
source.

ii.  Add u, the closest vertexin V - S, to S.

iii. Re-compute the distances for the verticesin V - §
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Consider the following example for illustration. Find the shortest path from node X to node Y in the
following graph. A label on an edge indicates the distance between the two nodes the edge connects.

Applying Dijkstra algorithm:
1. S={X}
2. Distances of all the nodes from
3. The nodes in the S:
XA =28 XB=3 XC=o
XD = XE = o XY =
4. Since, minimum distance from Sto V - S is 3 (XB), S = {X,B} and E = {XB}
5. Distances of all the nodes from the nodes in the S:
XA =38 XC = o XD =o XE = XY = o
XBA = = XBC =7 XBD = = XBE = 8 XBY =6
6.  Since, minimum distance from Sto V - Sis 6 (XBY),S = {X,B, Y} and E = {XBY]}.

7. Distances of all the nodes from the nodes in the S:

XA =8 XC=o XD = o XE =
XBA = o XBC =7 XBD = o XBE =8
XBYA = o XBYC = » XBYD = o XBYE = o

8. Continuing in similar manner, we find that the shortest path between nodes X and Y is XBY
with cost value 6.

Network how Problems
Find the shortest path from A to Z for the given graph:
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Solution:
Initially P={A} and
T={B,C,ED,Z}
The lengths of different vertices (with respect to P) are:
L(B)=1,L(C)=4,L(D)=L(E)= L(Z)=¥
® So L(B)= 1is the shortest value
Now let P={A,B} and T={C,D,E,Z}
so, L(C)=3,L(D)=8, L(E)=6,L(Z)= ¥
® So L(C) =3, is the shortest value.
Now P={A,B, C} and T'={D,E,Z}
L'(D)= Min{8,¥}=8. L'(E)= Min{6,3+1} =4
L'(Z) = Min {¥3+¥}=¥

Successive observations are shown in following figures:

/5 1/

3(b) 4 (a,b,c)

Contd....
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3(@b)

7(a, b, c,¢€)

4(ab,0

T(ab,c,e)

N

4(a,b,¢)
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10(a, b, c, &)

9(a,b,c, e, d)

Thus the shortest path from A to Z is (A, B, C, E, D, Z) of length 9.

6.5 WARSHALL ALGORITHM

Given the Adjacency Matrix A , this matrix produces the path matrix P.

1. [Initialization]
P-A
2 [Perform a pass]
Repeat thru step A for k=1(1)n
3 [Process Rows]
Repeat step 4 for i=1(1) n.
4 [Across column]
Repeat for j=1(1)n
Pi=p VIV, " Py
5. [Exit]

6.6 MINIMAL ALGORITHM

Given the Adjacency Matrix B in which the zero elements are replaced by infinity or by some large
number, the matrix produced by the following algorithm shows the minimum length of paths
between the nodes. MIN is a function that selects the algebraic minimum of its two arguments.



M.S. University - D.D.C.E. Graph Algorithms 147

[1] c-B

[2] Repeat thrustep 4 fork =1(1) n

[3] Repeat thrustep 4 forj =1(1) n
¢;= MIN (c;, ¢, + ¢,)

[5] exit |

6.7 TRAVERSING A GRAPH

This section presents the methods of traversing a graph (directed as well as undirected). It also
describes algorithms for traversing graphs.

6.7.1 Depth-first Traversal

A graph can be traversed either by using the depth first traversal or breadth first traversal. When a
graph is traversed by visiting the nodes in the forward (deeper) direction as long as possible, the
traversal is called depth first traversal. For example, for a graph shown in Figure 6.9, the depth first
traversal starting at the vertex v, visits the node in the order shown in Figure 6.7 itself.

Figure 6.7: Graph g and its Depth First Traversals Starting at Vertex v,
Some of the depth first traversal orders are:
@D v,v,v,v,v,v,v.v,v,
i) v,v,v,v,v,v,v, v, v,

The procedure for depth first traversal of a graph is given below. The procedure makes use of a global
array visited of n elements where n is the number of vertices of the graph, and the elemients are
boolean. If visited[i] = true then it means that i vertex is visited. Initially we set visited[i] = false,
therefore:

For(i = 1; i < n; i++)
visited[i] = false;

for(i = 1; 1 < n; i++)
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if(visited[i] == false) dfs(i);

void dfs(node x)

{
visited[x] = true;
for every adjacent v of x do
dfs (y) ; ’
}

If the graph G to which the dfs is applied is represented by using adjacency lists then the vertices y
adjacent to x can be determined by following the list of adjacent vertices for each vertex. Therefore the
loop searching for adjacent vertices has the total cost of d, + d, + ... + d_, where d, is degree of vertex
v. because the number of nodes in the adjacency list of vertex v, is d,. If the graph G is having n vertices
and e edges then the sum of the degree of each vertex, i.e., (d, + d, +...+ d) is 2e. Therefore there are
total 2e list nodes in the adjacency lists of G. (if G is directed graph then there are total e list nodes
only). The algorithm examines each node in the adjacency lists at the most once. Hence the time
required to complete the search is O(e) provided n< = e. Instead of using adjacency lists if adjacency
matrix is used to represent a graph G, then the time required to determine all adjacent vertices of a
vertex is O(n), and since most n vertices are visited the total time required is O(n?).

When this procedure is applied to the graph of Figure 6.7, then one of the orders in which the vertices
gets visited is shown below:

Vi false true true true true true true true true | true
V) false | false true true true true true true true | true
Vi false | false false | true true true true true true | true
V4 false | false false | false | false | false false false true | true
Vs false | false false | false | false false | false false false | true
Vg false | false | false | false | false false | false true true | true
\'Zi false | false false | false true true true true true | true
Vg false | false false | false | false true true true true | true
Vo |- false | false false | false | false false true true true | true

6.7.2 Breadth-first Traversal

When a graph is traversed by visiting all the adjacent of a node/vertex first, the traversal is called
breadth first traverral. For example, for a graph shown below one of the breadth first traversal starting
at the vertex v, visits the node in the order shown below in Figure 6.8.
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Figure 6.8: Bradth First Traversal of Graph G Starting at Vertex v,
breadth first traversal order = v, v, v, v, v, v, v, v, v,

The procedure for breadth first traversal of a graph is given below. The procedure makes use of a
global array of n elements where n is number of vertices of the graph, and the elements are boolean. If
visited[i] = true then it means that i vertex is visited. The procedure also makes use of a queue, and
the procedures addqueue and deletequeue are assumed to be available for adding a vertex to the
queue, and for deleting the vertex from the queue. Initially we set visited[i] : = false, therefore:

For(i = 1; I < n; i++)

visited[i] = false;

void bfs(node x)

{
node y;
addqueue (x) ;
while (queue 1s not empty)
{
deletequeue(y );
if(visited[y] == false)
{
visited([y] = true;
for everv adjacent i of x do
if (visited[i] == false)
addgueue (i) ;
}
}
}

If the graph G to which the bfs is applied is represented by using adjacency lists, then the vertices
adjacent to x can be determined by following the list of adjacent vertices for each vertex. Therefore,
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the loop searching for adjacent vertices has the total cost of d, +d, + ... + d, where d, is degree of
vertex v; because the number of nodes in the adjacency list of vertex v, is d.. If the graph G is having n
vertices and e edges then the sum of the degree of each vertex, i.e (d, +d, + ...+ d) is 2e. Therefore
there are 2e list nodes in the adjacency lists of G. (if. G is directed graph then there are e list nodes
only). Each vertex gets added to queue exactly once, hence the loop while queue not empty is iterated
at the most n times. Hence, the time required to complete the search is O(e) provided n< = e. Instead
of using adjacency lists if adjacency matrix is used to represent a graph G, then the time required to
determine all adjacent vertices of a vertex is O(n), and since every vertex gets added to queue exactly
once the total time required is O(n?).

When this procedure is applied to the Figure 6.9 graph, then one of the orders in which the vertices
gets visited is shown below:

v, | false | true | true true true true

g

true true true

]

v, | false | false | true true true true | true | true

true
v3‘ false | false | false false true true | true | true | true | true

v, | false | false | false false false | true | true | true | true

v; | false | false | false true true true | true | true | true | true
v, | false | false | false false false | false | false | true | true | true
v, | false | false | false false false | false | true | true | true

true
vs | false | false | false false false | false | false | false | true | true
true

v, | false | false | false false false | false | false | false | false

Figure 6.9

6.8 SPANNING TREES

This section presents the concept of spanning tree. It also presents the concept of weighted graph and

minimum cost spanning tree for the weighted graph. It also discusses the properties of Minimum
Spanning Tree (MST).

Depth.first Spanning Tree and Breadth-first Spanning Tree

If a graph G is connected, then the edges of G can be partitioned into two disjoint sets. One is a set of
tree edges, which we denote as set T, and other is a set of back edges, which we denote as B. The tree
edges are precisely those edges which are followed during the depth-first traversal or during the
breadth first traversal of the graph G. If we consider only the tree edges, we get a subgraph of G
containing all the vertices of G, and this sub-graph is a tree called spanning tree of the graph G. For
example, consider the graph shown below in Figure 6.10.
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i 2
4 3

Figure 6.10: Graph G

One of the depth-first traversal orders for this tree is: 1-2-3-4; hence the tree edges are (1,2),(2,3) and
(3,4). Therefore one of the spanning trees obtained using depth-first traversal of the graph of Figure

6.14 is shown in Figure 6.11.
2
3

Figure 6.11: Depth-first Spanning Tree of the Graph of Figure 6.14

S,

S,

Similarly one of the breadth-first traversal orders for this tree is : 1-2-4-3; hence the tree edges are
(1,2),(1,4) and (4,3). Therefore one of the spanning trees obtained using breadth first traversal of the
graph is shown in Figure 6.12.

O O

Figure 6.12: Breadth-first Spanning Tree of the Graph of Figure 6.14
The procedure for obtaining the depth first spanning tree is given below.
T = ¢; /*initially set of tree nodes is empty*/
void dfst (node v) -
{
if(visited([v] == false)

{

visited([v] = true;
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for every adjacent i of v do
{
T=T¢ {(v,i)};
dfst(i);

}

If a graph G is not connected, then the tree edges, which are precisely those edges followed during the
depth-first traversal of the graph G, constitutes the depth-first spanning forest. The depth-first
spanning forest will be made of trees each of which is one of the connected components of graph G.

When a graph G is directed then the tree edges, which are precisely those edges followed during the
depth-first traversal of the graph G, form a depth-first spanning forest for G. In addition to this, there
are three other types of edges. These are called back edges, forward edges, and cross edges. An edge A
— B is called a back edge if B is an ancestor of A in the spanning forest. A non-tree edge that goes from
a vertex to a proper descendant is called a forward edge. An edge which goes from a vertex to another
vertex that is neither an ancestor nor a descendant is called cross edge. An edge from a vertex to itself is
a back edge.

For example, consider a directed graph G shown below in Figure 6.13.

A DanaO

G Q C

Figure 6.13: A Directed Graph G

The depth-first spanning forest for the graph G of Figure 6.13 is shown in Figure 6.14.
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AL

Figure 6.14: Depth-first Spanning Forest for the Graph G of Figure 7.17

Consider a graph show below in Figure 6.15.

Figure 6.15: A Graph G

If we apply the procedure dfst to this graph one of the depthirst spanning trees that we get by
starting with vertex 1 is shown below in Figure 6.16.

Figure 6.16: Depth-first Spanning Tree of the Graph G of Figure 6.19

6.9 MINIMUM-COST SPANNING TREE

When the edges of the graph have weights representing the cost in some suitable terms then we can
obtain that spanning tree of a graph whose cost is minimum, in terms of the weights of the edges. For
this, we start with the edge having the minimum-cost/weight add it to set T, and mark it visited. We
next consider the edge with minimum-cost which is not yet visited, add it to T, and mark it visited.
While adding an edge to the set T, we first check whether both the vertices of the edge are visited, if it
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is we do not add to the set T, because it will form a cycle. For example, consider the graph shown
below in Figure 6.17.

16
® 2
19 21 11
6
33 4 10
() 4
18

Figure 6.17: A Graph G

The minimum-cost spanning tree of the graph of Figure 6.17 is shown below in Figure 6.18.

16

18

Figure 6.18: The Minimum-cost Spanning Tree of Graph G of Figure 6.17

6.9.1 MST Property

Let G = (V, E) be a connected graph with a cost function derided on the edges. Let U be some proper
subset of the set of vertices V. If (u, v) is an edge the of lowest cost such that uisin U, and visin V -
U, then there is a minimum cost spanning tree that includes edge (u,v). Many of the methods of
constructing a minimum cost spanning tree use the following properties:
Prim’s Algorithm
Let G=(V, E) be a weighted graph, and suppose V={1,2,.. ..,n}. The prim’s algorithm begins with a set
U initialized to {1}, and at each stage finds the shortest edge (u, v) that connectsuin Uand vin V - U,
and then adds v to U. It repeats this step until U = V.
void mcost(graph G, set of edges T)
{

set of vertices U;

vertex u, Vv;

{
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T =¢
U= {1}
While U # V do
{
find the lowest cost edge (u,v)
such that u is in U
and v is in V-U
add (u,v) to T

add v to U

}

6.9.2 Application of Minimum-cost Spanning Tree

A property of a spanning tree of a graph G is that, a spanning tree is 2 minimal connected sub-graph of
G (by minimal we mean the one with fewest number of edges). Therefore if nodes of G represent cities
and the edges represent possible communication link connecting two cities, then the spanning trees of
the graph G represent all feasible choices of the communication network. If each edge has weight
representing cost measured in some suitable terms (like cost of construction or distance etc.), then the
minimum-cost spanning tree of G is the selection of the required communication network.

Check Your Progress

1. What is minimum cost spanning tree?

2. What is depth-first traversal?

6.10 LET US SUM UP

® A graph consists of two non-empty subsets E(G) and V(G), where V(G) is a set of vertices and
E(G) is a set of edges connecting those vertices.

® Graph is a superset of tree. Every tree is a graph but every graph is not necessarily a tree.

® A graph in which every edge is directed is called directed graph or digraph. A graph in which every
edge is undirected is called an undirected graph.

® There are two methods to traverse a graph.
(i) Depth-first search
(i) Breadth-first search

® Spanning tree is a tree obtained from a graph which covers all its vertices.

6.11 KEYWORDS
Digraph: A graph in which every edge is directed.

Undirected Graph: A graph in which every edge is undirected.
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Null Graph: A graph containing only isolated nodes.

Spanning Tree: A tree obtained from a graph which covers all its vertices.

Minimum Spanning Tree: A tree from the set of spanning tree which has minimum weight.

6.12 QUESTIONS FOR DISCUSSION

1.
2.

10.

What is a graph? Compare graphs with trees.
Define these graphs:

() Undirected graphs

(i) Directed graphs

Explain Warshall's minimal algorithm for finding the path matrix of a graph given its adjacency
matrix. '

What do you mean by traversal of any graph?

Write depth first search algorithm for the traversal of any graph. Write a "C" program for the
same. Explain your algorithm's time complexity with the help of an example.

Explain breadth first search algorithm for the traversal of any graph with suitable examples.
Define time complexity of the algorithm. Write a "C" program for the same.

Write Prim's algorithm for finding minimal spanning tree of any graph. Find the minimal
spanning trees of the graph of previous questions by Prim's algorithm.

By considering the complete graph with n vertices, show that the number of spanning trees is at
least 2+1-1. k

Prove that when DFS and BFS are applied to a connected graph the edges of the graph form a

tree.

What do you understand by shortest path from one node to another in a weighted graph. Write
Dijkstra's algorithm to find the shortest path in a weighted graph. Find the shortest path from 3
to T using Dijkstra's algorithm in the following graphs:

@)
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11. Find the minimum distance between the nodes A and F in the following graph.

A |B |Cc |D |E |F
Alo |0 |3lo | @
Blagy|o |o 13|09 @4
clag|@slo |o |@4]o
Dlo |anlaylo |ap]o
E|l1)]o [@olo |o |4
Flo |@gylenienlo o

13. Obtain the minimum spanning tree for the following graph. The number in the parentheses are
the cost of the corresponding edge.

A |B C D E F
Al o @)l o |63)] o |@y
Blag| o | o @3] 09| @y
claglas| o | o leo] o
D| o |an|a9| o lay]| o
E|@)]| o |yl o | 0 |@)
Flo |wleyloy o] o
Check Your Progress: Model Answers
1. When the edges of the graph have weights representing the cost in some suitable terms then
we can obtain that spanning tree of a graph whose cost is minimum, in terms of the weights
of the edges.
2. When a graph is traversed by visiting the nodes in the forward (deeper) direction as long as
possible, the traversal is called depth first traversal.
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7.0 AIMS AND OBJECTIVES
After studying this lesson, you should be able to:

® Discuss greedy algorithms

e Describe the divide and conquer algorithms
e Explain the closest-points problem

® Define selection problem

® Analyse the theoretical improvements for arithmetic problems

7.1 INTRODUCTION

In this lesson, we will discuss about the design of algorithms. We will focus on some common types of
algorithms used to solve problems. For many problems, it is pretty possible that at least one of these
methods will work. :
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7.2 GREEDY ALGORITHMS

Firstly, we will discuss about greedy algorithm. Greedy algorithms perform in phases. In every phase, a
verdict is made that emerges to be good, neglecting upcoming penalties. Usually, this shows that some
local optimum is selected. The source of the name for this type of algorithms is "take what you can get
now" policy. When the algorithm expires, we anticipate that the local optimum is identical to the
global optimum. In this case, the algorithm is accurate; or else, the algorithm has created a suboptimal
resolution. If the supreme best solution is not essential, then uncomplicated greedy algorithms are at
times used to produce fairly accurate answers, instead of using the more intricate algorithms usually
needed to produce a precise answer.

The most evident real-life case of greedy algorithms is the coin-changing problem. To formulate
modification in U.S. currency, we frequently distribute the major quantity. Therefore, to provide
seventeen dollars and sixty-one cents in change, we provide a ten-dollar bill, a five-dollar bill, two
one-dollar bills, two quarters, one dime, and one penny. By doing this, we are assured to diminish the
number of bills and coins. This algorithm does not function in all financial systems, but luckily, we
can establish that it does function in the American financial system. Certainly, it functions even if
two-dollar bills and fifty-cent pieces are permitted.

Another real-life example is traffic problems where building locally best possible choices does not
forever work. For instance, for the duration of certain rush hour times in Miami, it is best to keep
away from the prime lanes even if they seems to be vacant, as traffic will come to a languish a mile
down the lane, and you will be trapped. Also more scandalous, it is healthier in some cases to make a
momentary deviation in the direction opposite your target in order to evade all traffic holdups.

Now, we will discuss some applications that use greedy algorithms. The first application that will be
discussed is a simple scheduling problem. Practically all scheduling problems are either NP-complete
(or of alike complicated complexity) or are solved by a greedy algorithm. The second application that
we will discuss is file compression and is one of the most primitive fallout in computer science.
Finally, we will discuss an example of a greedy approximation algorithm.

7.2.1 A Simple Scheduling Problem

In simple scheduling problem we are provided with some jobs j, f,, . . ., j,, all with given running
times t,, Ly, . . . , t,, respectively with a single processor. Now we need to know the finest way to
schedule these jobs so as to reduce the average completion time.

Job Time
], 16

I, 8

IR 3

1, _ 14
Scheduling

]1 ]2 ]3 J4

16 20 28 40

Average completion time = (16+20+28+40)/4 = 26
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Js Jz Ji Ji

3 12 24 40
Average completion time = (3+12+24+40)/4 = 19.75
Simple scheduling problem have some following properties:

®  Greedy-choice property: If shortest job does not go initially the y jobs before it will finish 3 time
units quicker, but j, will be delayed by time to finish all jobs previous to it.

®  Optimal substructure: If shortest job is detached from optimal solution, left over solution for n-1
jobs 1s optimal.

Optimality Proof
Total cost of a schedule is
N
(N -k + Duk
k=1
t, + (G4t + (G +5+t) o (G + 4+t
N
(N+1) Ztik - Zk*tik
k=1
® First term is independent of ordering, as second term increases, total cost becomes smaller.

Assume that there is a job ordering such that x > y and tix < tiy. Swapping jobs (smaller first)
increases second term decreasing total cost

Show: xtix + ytiy < ytix + xtiy
XUX + YUy = XtiX + ytix + y(tiy - tix)
= ytx + xtix+ y(tiy - tix)
< ytx + xtix+ x(tly - tix)

= ylX + XtiX+ Xtly - XtiX = ytix + xtiy

7.2.2 Huffman Codes

Now, we consider a second application of greedy algorithms, known as file compression.

The normal ASCII character set includes roughly 100 "printable” characters. To differentiate these
characters, 7 bits are needed. Seven bits permit the demonstration of 128 characters, so the ASCII
character set adds some other "nonprintable” characters. An eighth bit is added as a parity check.

Assume we have a file that encloses only the characters 4, ¢, i, s, ¢, plus empty spaces and newlines.
Assume further, that the file has ten 4's, fifteen e's, twelve i's, three s's, four t's, thirteen blanks, and
one newline. As the table in Figure 7.1 shows, this file needs 174 bits to signify, since there are 58
characters and each character requires three bits.
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Character Code Frequency Total Bits

a 000 10 30
e 001 15 45
1 010 12 36
s 011 3 9
t 100 4 12
space 101 3 39
newline 110 1 3
Total 174

Figure 7.1 Using a Standard Coding Scheme

In real case, files can be relatively bulky. Many of the very huge files are production of some program
and there is typically a big difference between the most common and least common characters. For
example, many huge data files have an enormously large quantity of digits, blanks, and newlines, but
few g's and x's. We may be involved in minimizing the file size in the case where we are broadcasting
it over a slow phone line. Also, as on virtually every machine disk space is valuable, one might wonder
if it would be probable to offer a better code and decrease the total number of bits needed.

The answer is that this is achievable, and a simple policy attains 25 percent savings on usual huge files
and as much as 50 to 60 percent savings on many huge data files. The common policy is to permit the
code length to differ from character to character and to make sure that the often happening characters
have short codes. Observe that if all the characters appear with the similar frequency, then there are
not probable to be any savings.

Huffman's Algorithm

Compressing data is an imperative method for performing computing. Data sent over the Internet is
required to be sent as densely as achievable. There are many dissimilar methods for condensing data,
but one specific method makes use of a greedy algorithm—Huffman coding. This algorithm is named
for the late David Huffman, an information philosopher and computer scientist who invented the
practice in the 1950s. Data compressed using a Huffman code can accomplish savings of 20% to 90%.
When data are compressed, the characters that build up the data are typically converted into some
other demonstration to save space. A usual compression method is to convert each character to a
binary character code, or bit string.

For instance, we can encode the character “a” as 000, the character “b” as 001, the character “c” as 010,
and so on. This is known as a fixed-length code. The Huffman code algorithm takes a cord of
characters, converts them to a variable-length binary string, and generates a binary tree for the
intention of decoding the binary strings. The path to each left child is allocated the binary character 0
and each right child is allocated the binary character 1. The algorithm functions as follows:

Start with a string of characters you would like to compress. For each character in the string, compute
its frequency of appearing in the string. Then arrange the characters into order from lowest frequency
to highest frequency. Take the two characters with the minimum frequencies and make a node with
each character (and its frequency) as children of the node. The parent node’s data element consists of
the sum of the frequencies of the two child nodes. Insert the node back into the list. Continue this
process until every character is located into the tree. On the completion of this process, you have a
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complete binary tree that can be used to decode the Huffman code. Decoding comprises following a
path of Os and 1s until you get to a leaf node, which will enclose a character.

7.3 DIVIDE AND CONQUER

Divide and Conquer is another common technique used to design algorithms. Divide and conquer
algorithms consist of two parts:

Divide: Smaller problems are resolved recursively.
Conguer: The key to the original problem is then produced from the solutions to the sub problems.

Conventionally, schedules in which the text consists of at least two recursive calls are known as divide
and conquer algorithms, where as schedules whose text consists of only one recursive call are not. We
usually persist that the sub problems be displaced (that is, basically nonoverlapping). Let us review
some of the recursive algorithms that have been covered in this text.

We have already seen several divide and conquer algorithms. In lesson 3, we saw tree traversal
strategies. In lesson 5, we saw the classic examples of divide and conquer, namely mergesort and
quicksort, which have O (n log ) worst-case and average-case bounds, respectively.

Lesson 6 showed routines to recover the shortest path in Dijkstra's algorithm and other events to
perform depth-first search in graphs. None of these algorithms are really divide and conquer
algorithms, because only one recursive call is performed.

Now, we will see more cases of the divide and conquer pattern. Our first application is a problem in
computational geometry. Specified 7 points in a plane, we will illustrate that the closest pair of points
can be found in O(n log 7) time. The rest of the discussion shows some awfully interesting, but mostly
hypothetical, results. We offer an algorithm which solves the selection problem in O(n) worst-case
time. We also prove that 2 n-bit numbers can be multiplied in o(n’) operations and that two 7 x 7
matrices can be multiplied in o(n’) operations. Unluckily, yet these algorithms have improved worst-
case bounds than the conventional algorithms, none are realistic barring very large inputs.

7.3.1 Running Time of Divide and Conquer Algorithms

All the competent divide and conquer algorithms divide the problems into subproblems, each of
which is some division of the original problem, and then execute some supplementary work to
calculate the final answer. As an instance, we have seen that merge sort functions on two problems,
each of which is half the size of the original, and then uses O(n) supplementary work. This capitulate
the running time equation (with appropriate initial conditions)

T(n) = 2T(n/2) + O(n)

7.3.2 Closest-points Problem

e Given n points in d-dimensions, find two whose shared distance is minimum.

® [Itisaprimary problem in many applications as well as a key step in many algorithms.
® A naive algorithm takes O(dn2) time.

® Element individuality reduces to Closest Pair, so -(n log n) lower bound.
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We will build up a divide-and-conquer based O(n log n) algorithm; dimension assumed constant.

1-Dimension Problem

e 1D problem can be solved in O(n log n) by means of sorting.

e Sorting, though, does not simplify to higher dimensions. So, let’s build up a divide-and-conquer for
1D.

e Divide the points S into two sets S1; S2 by some X-coordinate so that p < q for all p €S1 and q
€S2.

e Recursively calculate closest pair (p1; p2) in S1 and (q1; q2) in S2.

® Let$be thé smallest division found until now:
$ = min(|p2-p1}; [q2-41])

1D Divide & Congquer

e The closest pair is {p1; p2}, or {q1; g2}, or some {p3; g3} where p3 € S1 and g3 €52.
If m is the dividing coordinate, then p3; g3 must be within $ of m.

e In 1D, p3 must be the rightmost point of S1 and q3 the leftmost point of S2, but these ideas do not
simplify to higher proportions.

e How many points of S1 can lie in the interval (m-$;m]?

® By definition of $, at most one. Same holds for S2.

1D Divide & Conquer

e Closest-Pair (S).

e If |S| = 1, output $ = infinity. If |S| = 2, output$ = |p2-pl|. Or else, perform the following

steps:
1. Let m = median(S).
2. Divide S into S1; S2 at m.
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3. $1 = Closest-Pair(S1).
4. $2 = Closest-Pair(S2).
5. $12 is minimum distance across the cut.
6. Return $ = min($1; $2; $12).
® Recurrence is T(n) = 2T(n=2) + O(n), which solves to T(n) = O(n log n).
2-D Closest Pair
® We partition S into S1; S2 by vertical line | defined by median x-coordinate in S.
e Recursively compute closest pair distances $1 and $2. Set $= min($1; $2).
e Now compute the closest pair with one point each in S1 and S2.
e In each candidate pair (p; q), where p € S1and q € S2, the points p; q must both lie within $of 1.

® At this point, complications arise, which weren’t present in 1D. It’s entirely possible that all n=2
points of S1 (and S2) lie within $ of 1.

e Naively, this would require n2/4 calculations.

® We show that points in P1; P2 ($ strip around ) have a special structure, and solve the conquer
step faster.

7.3.3 Selection Problem

In this problem, we are provided an unordered list of elements, and want to locate the kth largest
element. An easy way of solving this problem is to initially arrange the list and then study the kth
largest element. This takes time O(n log n). Yet, most probably locating only the kth largest element
should be easier than arranging the whole list. For instance, we could preserve a list of the k largest
elements and populate this list in time O(n log k). When k is a small constant, this takes only linear
time. We will prove that we can execute selection in linear time for an subjective k using a divide and
conquer method.

To get instinct of the solution of the problem, assume that we could locate the median of a list in
linear time. We state that we can then use this as a sub procedure in a divide and conquer algorithm to
locate the kth largest element. Specifically, we use the median to divide the list into two halves. Then
we recursively locate the preferred constituent in one of the halves (the first half, if k _ n/2, and the
second half otherwise). This algorithm takes time cn at the first level of recursion for some constant c,
cn/2 at the next level (as we recurse in a list of size n/2), cn/4 at the third level, and so on. The total
time taken iscn + cn/2 + cn/4 + -+ - = 2cn = O(n).

Unluckily, however, locating the median doesn’t appear to be much easier than locating the kth largest
element. The main idea here is that for applying the recursion, we are not required a precise median -
a near-median would do. Particularly assume we could locate an element at every step such that at least
3/10th of the elements in the list are minor than it and at least 3/10th of the elements are bigger than it,
then we could still apply the same divide and conquer method as above. Assuming each divide step
takes linear time, our running time would become at most cn + 7/10 cn + 49/100 cn + - - - = 3.33cn

= O(n).

Lastly, it turns out that we can locate a near-median in linear time by again applying recursion.
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Specitically, we divide the list into groups of 5 elements each, discover the median in each group in
constant time (as each group is of constant size), and then discover the median of these medians
recursively. The main point to observe is that the final step of locating the median of medians applies
to a much smaller list - of size n/5, and so we still get a small enough running time.

This was just a coarse description and analysis of the algorithm. A more formal analysis defined below:

For straightforwardness of analysis, we suppose that all the list sizes we come across while running the
algorithm are divisible by 5.

Algorithm for Selection

1. Divide the list into n/5 lists of 5 elements each.

2. Find the median in each sublist of 5 elements.

3. Recursively find the median of all the medians, call it m.
4

Partition the list into elements larger than m (call this sublist L1) and those no larger than m (call

this sublist L2).
5. Ifk_ |L1], return Selection(L1, k).
6. Ifk_ |L1| + 1, return Selection(L2,k — |L1]).

The accuracy of the algorithm is simple to quarrel and we will omit the disagreement. Let us analyse
the running time. Observe that we make two recursive calls. The first is to a list of size n/5. The
second is to either L1 or L2. We quarrel that these lists can be no bigger than 7n/10 in size. This is for
the reason that there are n/10 medians at step 3 that are minor than m, and there are three elements in
each of the sublists equivalent to these n/10 medians that are no bigger than the medians, and
consequently no larger than m itself. As a result, L2 is of size at least 3n/10, and L1 is of size at most
n-|L2]| _7n/10. Similarly we can quarrel that L1 is of size at least 3n/10 and so L2 is of size at most
7n/10. '

Thus we obtain the subsequent recurrence for the running time of the algorithm:
T(m) = cn + T(n/5) + T(7n/10)

where cn is the time taken to build the list of medians and to divide the list into L1 and L2 for a
suitable constant c.

One way of solving this recurrence is to estimate that the running time is T(n) = ¢’n and then verify
whether the equation is fulfilled for some worth of ¢’. Substituting this in the equation we get

cn=cn+9/10¢’n

which entails ¢ = 10c.

7.3.4 Theoretical Improvements for Arithmetic Problems

Now, we will discuss a divide and conquer algorithm that multiplies two n-digit numbers. Our
preceding model of calculation assumed that multiplication was performed in invariable time, since the
numbers were small. For large numbers, this supposition is no longer applicable. If we gauge
multiplication in view of the size of numbers being multiplied, then the normal multiplication
algorithm takes quadratic time. The divide and conquer algorithm occurs in subquadratic time. We
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also represent the typical divide and conquer algorithm that multiplies two 7 by n matrices in sub
cubic time.

® Multiplying Integers

® Matrix Multiplication

Multiplying Integers

Let us consider multiplying two n-digit numbers x and y. If precisely one of x and y is negative, then

the solution is negative; or else it is positive.

If x = 61,438,521 and y = 94,736,407, xy = 5,820,464,730,934,047. Let us divide x and y into two
halves, including the most important and least important digits, correspondingly. Then x/ = 6,143, xr
= 8,521, y/ = 9,473, and yr = 6,407. We also have x = x/104 + xr and y = y/104 + yr. It shows that

xy = xly[108 + (xlyr + xry))104 + xryr

Observe that this equation comprises of four multiplications, xlyl, xlyr, xryl, and xryr, which are each
half the size of the original problem (n/2 digits). The multiplications by 108 and 104 amount to the
placing of zeros. This and the following additions add only O(r) supplementary work. If we execute
these four multiplications recursively by means of this algorithm, discontinuing at an suitable base
case, then we acquire the recurrence

T(n) = 4T(n/2) + O(n)

We know that T(n) = O(n’), so, unluckily, we have not enhanced the algorithm. To attain a
subquadratic algorithm, we must use less than four recursive calls. The main inspection is that

xlyr + xryl = (xl-xr)(yr - yl) + xlyl + xryr

Therefore, rather than using two multiplications to calculate the coefficient of 104, we can use one
multiplication, plus the result of two multiplications that have by now been performed. It is simple to
see that at the present the recurrence equation gratifies

T(n) = 3T(n/2) + O(n),

and so we acquire T(n) = O(nlog23) = O(n1.59). To complete the algorithm, we must have a base case,
which can be solved lacking recursion.

When both numbers are one-digit, we can do the multiplication by table lookup. If one number has
zero digits, then we return zero. In practice, if we were to use this algorithm, we would choose the
base case to be that which is most convenient for the machine.

Although this algorithm has better asymptotic performance than the standard quadratic algorithm, it
is rarely used, because for small » the overhead is significant, and for larger n there are even better
algorithms. These algorithms also make widespread use of divide and conquer.

Matrix Multiplication

A basic arithmetical problem is the multiplication of two matrices. Figure 7.2 gives a simple O(n’)
algorithm to figure out C = AB, where A, B, and C are 7 by » matrices. The algorithm follows
straightforwardly from the description of matrix multiplication. To calculate C, » we compute the dot

product of the ith row in A with the jth column in B. Typically arrays commences at index O.
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For a long time it was presumed that O(»’) was needed for matrix multiplication. Yet, in the late
sixties Strassen showed how to break the O(7’) obstruction. The fundamental idea of Strassen's
algorithm is to split each matrix into four quadrants, as shown in Figure 7.3. Then it is simple to show
that

C1,1 = A1,1 B1,1 +4,,B

1,2 721
CL2=‘4MBL2+‘4MBM
Cz,l = A2,1B1,1 + Az,sz,1
Cz,z = A2,131,2 + Az,sz,z
/* Standard matrix multiplication. Arrays start at 0 */
void
matrix_multiply( matrix A, matrix B, matrix C, unsigned int n )

{
int i, j, k;

for( i=0; i<n; i++ ) /* Initialization */
for( §=0; je<n; 4+ )

Clil(3j]1 = 0.0;

for( i=0; i<n; i++ )

for( j=0; j<n; Jj++ )

for( k=0; k<n; k++ )

Clil[J] += A{il(k] * B[k][]1;

}

Figure 7.2 Simple O(n’) matrix multiplication

{Am A1,2iH:B1,1 Bl,2:|: C1,1 C1,2:|
A2,1 Az,z Bz,1 Bz,z Cz,1 Cv,z

Figure 7.3 Decomposing AB = C into four quadrants

We know that 7(n) = O(#’), thus we do not have an enhancement. As we have seen with integer
multiplication, we must decrease the number of subproblems below 8. Strassen used a policy
analogous to the integer multiplication divide and conquer algorithm and dispayed how to use only
seven recursive calls by cautiously assembling the computations. The seven multiplications are

M, = (A,,-4,)B,, +B,)
M,= (A, +A4,)B, +B,)
M= (A,-A4,)B,, + B,
M, = (A, +A,)B,
M;=A,,(B,-B,)
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M, = 45, (32,1 - Bl,x)

M, =(A,, + A4,,)B,,

After the multiplications are performed, the concluding solution can be acquired with eight more
additions.

Coy=M +M-M, +M,

C=M, + M

C,=M + M,

Co =My~ M, + M, - M,

It is simple to confirm that this complicated ordering generates the preferred values. The running time
now assures the recurrence

T(n) = 7T(n/2) + O(n?).

The solution of this recurrence is 7(n) = O(nlog27) = O(r2.81).

Typically, there are particulars to consider, like the case when 7 is not a power of two, but these are
essentially minor troubles. Strassen's algorithm is poorer than the simple algorithm until 7 is quite
large. It does not simplify for the case where the matrices are light (contain many zero entries), and it
does not effortlessly parallelize. When run with floating-point entries, it is less stable numerically than
the typical algorithm. Therefore, it is has only restricted applicability. However, it symbolizes an
imperative theoretical landmark and surely shows that in computer science, as in many other fields,
even despite the fact that a problem appears to have an inherent difficulty, nothing is sure until
verified.

Check Your Progress|

1. Define greedy-choice property.
2. What is simple scheduling problem?

7.4 LET US SUM UP

This lesson illustrates some of the most common techniques found in algorithm design. When
confronted with a problem, it is worthwhile to see if any of these methods apply. A proper choice of
algorithm, combined with judicious use of data structures, can often lead quickly to efficient solutions.

7.5 KEYWORDS

Optimal Substructure: 1f shortest job is detached from optimal solution, left over solution for n-1 jobs is
optimal.

Diévide: Smaller problems are resolved recursively.

Congquer: The key to the original problem is then produced from the solutions to the sub problems.
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7.6 QUESTIONS FOR DISCUSSION

1. What are greedy algorithms? Discuss some real life examples.

2. A file contains only colons, spaces, newline, commas, and digits in the following frequency: colon
(100), space (605), newline (100), commas (705), 0 (431), 1 (242), 2 (176), 3 (39), 4 (185), 5 (250), 6
(174), 7 (199), 8 (205), 9 (217). Construct the Huffman code.

3. Complete the proof that Huffman's algorithm generates an optimal prefix code.

4. Write a program to implement file compression (and uncompression) using Huffman's
algorithm.

5. Write a program to implement the closest-pair algorithm.

Check Your Progress: Model Answers

1.  Greedy-choice property: If shortest job does not go initially the y jobs before it will finish
3 time units quicker, but j, will be delayed by time to finish all jobs previous to it.

2. Insimple scheduling problem we are provided with some jobs ji, j,, - . . , j,, all with given
running times ¢, Z,, . . . , t,, respectively with a single processor.
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